Reflection (mathematics)
http://dbpedia.org/resource/Reflection_(mathematics) an entity of type: Thing
Spiegelungen sind in der Geometrie bestimmte Kongruenzabbildungen der Zeichenebene oder des (euklidischen) Raumes. Eine Gleitspiegelung ist die Kombination aus einer Spiegelung und einer Translation. Daneben gibt es Schrägspiegelungen, die keine Kongruenzabbildungen sind.
rdf:langString
In matematica, e più precisamente in geometria, una riflessione è una trasformazione della retta, del piano o dello spazio che "specchia" tutti i punti rispetto a (rispettivamente) un punto, una retta, o un piano (detti rispettivamente centro, asse o piano di riflessione).
rdf:langString
数学における鏡映(きょうえい、英: reflection)あるいは鏡映変換とはユークリッド空間の超平面を固定点集合にもつ等長変換である。その名の通り、3次元空間内では、ある図形に鏡映変換を施したものは、平面鏡に映ったその図形の位置及び見え方と一致する。(この場合、鏡の位置が固定点集合となる) 例えば2次元ユークリッド空間では鏡映の固定点集合は直線であり、固定点集合を鏡映の軸という。逆に、与えられた直線を軸とする鏡映が定まり、直線による折り返しなどとも呼ばれる。同様に、3次元空間では与えられた平面による鏡映が定まる。 鏡映によって変わらない図形を鏡映対称(2次元図形の場合、特に線対称とも呼ぶ)である、あるいは鏡映対称性を持つなどという。特に軸が垂直な場合は左右対称とも言われる。例えばアルファベットの A や H などは垂直な軸に関して鏡映対称である。3次元の物体や現象(特に分子)が鏡映対称であって、合同ではないことを掌性と呼ぶ。 長さや角度は鏡映によって変わらないが、向きが変わる。また、同じ鏡映を2回続けて行うと恒等変換になるので鏡映は対合の一種である。
rdf:langString
기하학에서 반사(反射, 영어: reflection) 또는 대칭 이동(對稱 移動)은 유클리드 공간 위의 점을 어떤 초평면에 대한 ‘거울상’으로 변환시키는 함수이다.
rdf:langString
在数学中,反射是把一个物体变换成它的镜像的映射。要反射一个平面图形,需要“镜子”是一条直线(反射轴),对于三维空间中的反射就要使用平面作为镜子。反射有时被认为是圆反演的特殊情情况,参考圆有无限半径。 在几何上说,要找到一个点的反射,可从这个点向反射轴画一条垂线。并在另一边延续相同的距离。要找到一个图形的反射,需要反射这个图形的每个点。 两次反射回到原来的地方。反射保持在点之间的距离。反射不移动在镜子上的点,镜子的维数比发生反射的空间的维数要小1。这些观察允许我们形式化反射的定义:反射是欧几里得空间的对合等距同构,它的不动点集合是余维数为1的仿射子空间。 在经历特定反射后不改变的图形被称为有。 密切关联于反射的是和圆反演。这些变换仍对合于有余维数1的不动点的集合,但它们不再是等距的。
rdf:langString
Відбиття, дзеркальне відбиття, дзеркальна симетрія — рух евклідового простору, множина нерухомих точок якого, є гіперплощиною (у випадку тримірного простору — просто площиною). Термін «дзеркальна симетрія» використовується також для опису відповідного типу симетрії об'єкта, тобто, коли об'єкт під час операції відбиття переходить сам у себе. Це математичне поняття описує співвідношення в оптиці об'єктів і їх (уявних) зображень у разі відбиття у пласкому дзеркалі, а також багато які закони симетрії (у кристалографії, хімії, фізиці, біології і тощо, а також у мистецтві).
rdf:langString
في الرياضيات، الانعكاس (بالإنجليزية: Reflection أو Reflexion) هو دالة تحول شكلا ما إلى صورة مرآته (المعكوسة). فمثلا، انعكاس شكل الحرف "p" بالنسبة لخط عموي (أو مرآة) يصبح الشكل "q".لعكس مسطح ثنائي الأبعاد، يستعمل خط مرآةً ويُسمى . بينما يلزم لانعكاس جسم ثلاثي الأبعاد مثل القطة مستوى ثنائي الأبعاد مرآة. ويعتبر الانعكاس في بعض الأحيان حالة خاصة من حالات (inversion). وبالمفهوم الهندسي، لإيجاد الانعكاس لنقطة ما، يتم إسقاط خط عمودي على الخط (أو المستوى) المستعمل كمحور الانعكاس، ثم مد الخط بشكل مستقيم في الجهة الأخرى من المحور وبنفس المسافة.
rdf:langString
En matemàtiques, una reflexió és una funció que transforma un objecte en la seva imatge especular. Per exemple, una reflexió de la lletra catalana b respecte d'una línia vertical, apareix com una d. Per a reflectir una figura plana cal que el "mirall" sigui una línia ("l'eix de reflexió"), mentre que per a reflexions en l'espai de tres dimensions s'ha d'emprar un pla com a mirall. D'una figura que no varia en aplicar-li una determinada reflexió es diu que té simetria especular.
rdf:langString
En matemáticas, una reflexión es un mapeo desde un espacio euclídeo a sí mismo que es una isometría con un hiperplano como un conjunto de puntos fijos; este conjunto es llamado eje (en 2 dimensiones) o plano (en 3 dimensiones) de reflexión. La imagen de una figura por una reflexión es su imagen especular, en el eje o plano de reflexión. Por ejemplo, la imagen especular de la letra minúscula p por una reflexión con respecto a un eje vertical se vería como la letra q. Su imagen por una reflexión en un eje horizontal se vería como la letra b. Una reflexión es una involución: cuando se aplica dos veces sucesivas, cada punto regresa a su localización original, y un objeto geométrico es restaurado a su estado original.
rdf:langString
In mathematics, a reflection (also spelled reflexion) is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis would look like q. Its image by reflection in a horizontal axis would look like b. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state.
rdf:langString
Em Matemática ou, mais precisamente, em geometria, reflexão é uma transformação geométrica do ponto, da reta, do plano ou do espaço que "espelha" todos os pontos em relação, respectivamente, a um ponto (dito centro de reflexão), uma reta (dita eixo de reflexão ou eixo de simetria) ou um plano (chamado plano de reflexão ou de simetria), transformando o ponto, a reta ou o plano num outro, que lhe é simétrico em relação ao eixo dado. As reflexões, como todas as simetrias, são transformações involutivas.
rdf:langString
De spiegeling is een afbeelding uit de meetkunde. In de wiskunde is het een voorbeeld van een affiene transformatie. Het beeld van een voorwerp V onder de spiegeling heet het spiegelbeeld van V. Links en rechts lijken onder de spiegeling omgedraaid, in werkelijkheid zijn voor en achter verwisseld. Men zegt dat de oriëntatie van het voorwerp van teken wisselt. Met een vlakke spiegel kan men de spiegeling van een figuur (tot aan de spiegel) of voorwerp daadwerkelijk zien. Een formele spiegeling van een voorwerp heeft echter ook betrekking op inwendige, onzichtbare delen.
rdf:langString
Отражение, зеркальное отражение или зеркальная симметрия — движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью). Термин зеркальная симметрия употребляется также для описания соответствующего типа симметрии объекта, то есть, когда объект при операции отражения переходит в себя.
rdf:langString
rdf:langString
انعكاس (رياضيات)
rdf:langString
Reflexió (matemàtiques)
rdf:langString
Spiegelung (Geometrie)
rdf:langString
Reflexión (matemática)
rdf:langString
Riflessione (geometria)
rdf:langString
鏡映
rdf:langString
반사 (기하학)
rdf:langString
Spiegeling (meetkunde)
rdf:langString
Reflection (mathematics)
rdf:langString
Reflexão (matemática)
rdf:langString
Отражение (геометрия)
rdf:langString
反射 (数学)
rdf:langString
Відбиття (геометрія)
xsd:integer
295829
xsd:integer
1107949534
rdf:langString
Vladimir L. Popov
rdf:langString
V.L.
rdf:langString
R/r080510
rdf:langString
Popov
rdf:langString
Reflection
rdf:langString
Reflection
rdf:langString
En matemàtiques, una reflexió és una funció que transforma un objecte en la seva imatge especular. Per exemple, una reflexió de la lletra catalana b respecte d'una línia vertical, apareix com una d. Per a reflectir una figura plana cal que el "mirall" sigui una línia ("l'eix de reflexió"), mentre que per a reflexions en l'espai de tres dimensions s'ha d'emprar un pla com a mirall. Geomètricament, per a trobar la reflexió d'un punt es traça una perpendicular del punt a la línia (pla) respecte de la (el) qual es fa la reflexió, i se segueix una distància igual cap a l'altra banda. Per a trobar la reflexió d'una figura, es troba la reflexió de cada un dels punts de la figura. La repetició d'una reflexió, retorna a la figura inicial. Les reflexions preserven les distàncies entre els punts. Les reflexions no alteren els punts que es troben damunt del mirall i la dimensió del mirall és una unitat inferior de la dimensió de l'espai en què té lloc la reflexió. Aquestes observacions permeten de formalitzar la definició de reflexió: Una reflexió és una isometria involutiva d'un espai euclidià que té per conjunt de punts fixos un espai afí de 1. D'una figura que no varia en aplicar-li una determinada reflexió es diu que té simetria especular.
rdf:langString
في الرياضيات، الانعكاس (بالإنجليزية: Reflection أو Reflexion) هو دالة تحول شكلا ما إلى صورة مرآته (المعكوسة). فمثلا، انعكاس شكل الحرف "p" بالنسبة لخط عموي (أو مرآة) يصبح الشكل "q".لعكس مسطح ثنائي الأبعاد، يستعمل خط مرآةً ويُسمى . بينما يلزم لانعكاس جسم ثلاثي الأبعاد مثل القطة مستوى ثنائي الأبعاد مرآة. ويعتبر الانعكاس في بعض الأحيان حالة خاصة من حالات (inversion). وبالمفهوم الهندسي، لإيجاد الانعكاس لنقطة ما، يتم إسقاط خط عمودي على الخط (أو المستوى) المستعمل كمحور الانعكاس، ثم مد الخط بشكل مستقيم في الجهة الأخرى من المحور وبنفس المسافة. ولتحديد الانعكاس لرسم ما، يتم تحديد انعكاسات كل النقاط المؤلفة له على الناحية الأخرى من محور الانعكاس.
rdf:langString
Spiegelungen sind in der Geometrie bestimmte Kongruenzabbildungen der Zeichenebene oder des (euklidischen) Raumes. Eine Gleitspiegelung ist die Kombination aus einer Spiegelung und einer Translation. Daneben gibt es Schrägspiegelungen, die keine Kongruenzabbildungen sind.
rdf:langString
En matemáticas, una reflexión es un mapeo desde un espacio euclídeo a sí mismo que es una isometría con un hiperplano como un conjunto de puntos fijos; este conjunto es llamado eje (en 2 dimensiones) o plano (en 3 dimensiones) de reflexión. La imagen de una figura por una reflexión es su imagen especular, en el eje o plano de reflexión. Por ejemplo, la imagen especular de la letra minúscula p por una reflexión con respecto a un eje vertical se vería como la letra q. Su imagen por una reflexión en un eje horizontal se vería como la letra b. Una reflexión es una involución: cuando se aplica dos veces sucesivas, cada punto regresa a su localización original, y un objeto geométrico es restaurado a su estado original. El vocablo «reflexión» es usado en ocasiones para una clase mayor de mapeos de un espacio euclídeo a sí mismo, principalmente las isometrías no-identidad que son involuciones. Dichas isometrías tienen un conjunto de puntos fijos (el «espejo») que es un subespacio afín, pero es posiblemente más pequeño que un hiperplano. Por ejemplo, la es una isometría involutiva con sólo un punto fijo; la imagen de la letra p bajo ella se vería como una d. Esta operación también es conocida como una , y exhibe al espacio euclídeo como un . En un espacio vectorial euclídeo, la reflexión sobre el punto situado en el origen es lo mismo que la negación de un vector. Otros ejemplos incluyen reflexiones en una línea en espacio 3-dimensional. Típicamente, el uso sin calificativos del término «reflexión» quiere decir reflexión en un hiperplano. Si una figura no cambia al aplicarsele una reflexión, se dice que tiene simetría especular En la literatura (particularmente en inglés), se usa también el término flip para referirse a una reflexión.
rdf:langString
In mathematics, a reflection (also spelled reflexion) is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is called the axis (in dimension 2) or plane (in dimension 3) of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter p for a reflection with respect to a vertical axis would look like q. Its image by reflection in a horizontal axis would look like b. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state. The term reflection is sometimes used for a larger class of mappings from a Euclidean space to itself, namely the non-identity isometries that are involutions. Such isometries have a set of fixed points (the "mirror") that is an affine subspace, but is possibly smaller than a hyperplane. For instance a reflection through a point is an involutive isometry with just one fixed point; the image of the letter p under itwould look like a d. This operation is also known as a central inversion , and exhibits Euclidean space as a symmetric space. In a Euclidean vector space, the reflection in the point situated at the origin is the same as vector negation. Other examples include reflections in a line in three-dimensional space. Typically, however, unqualified use of the term "reflection" means reflection in a hyperplane. Some mathematicians use "flip" as a synonym for "reflection".
rdf:langString
In matematica, e più precisamente in geometria, una riflessione è una trasformazione della retta, del piano o dello spazio che "specchia" tutti i punti rispetto a (rispettivamente) un punto, una retta, o un piano (detti rispettivamente centro, asse o piano di riflessione).
rdf:langString
数学における鏡映(きょうえい、英: reflection)あるいは鏡映変換とはユークリッド空間の超平面を固定点集合にもつ等長変換である。その名の通り、3次元空間内では、ある図形に鏡映変換を施したものは、平面鏡に映ったその図形の位置及び見え方と一致する。(この場合、鏡の位置が固定点集合となる) 例えば2次元ユークリッド空間では鏡映の固定点集合は直線であり、固定点集合を鏡映の軸という。逆に、与えられた直線を軸とする鏡映が定まり、直線による折り返しなどとも呼ばれる。同様に、3次元空間では与えられた平面による鏡映が定まる。 鏡映によって変わらない図形を鏡映対称(2次元図形の場合、特に線対称とも呼ぶ)である、あるいは鏡映対称性を持つなどという。特に軸が垂直な場合は左右対称とも言われる。例えばアルファベットの A や H などは垂直な軸に関して鏡映対称である。3次元の物体や現象(特に分子)が鏡映対称であって、合同ではないことを掌性と呼ぶ。 長さや角度は鏡映によって変わらないが、向きが変わる。また、同じ鏡映を2回続けて行うと恒等変換になるので鏡映は対合の一種である。
rdf:langString
De spiegeling is een afbeelding uit de meetkunde. In de wiskunde is het een voorbeeld van een affiene transformatie. Het beeld van een voorwerp V onder de spiegeling heet het spiegelbeeld van V. Links en rechts lijken onder de spiegeling omgedraaid, in werkelijkheid zijn voor en achter verwisseld. Men zegt dat de oriëntatie van het voorwerp van teken wisselt. Spiegeling in een -dimensionale ruimte gebeurt met een -dimensionale deelruimte als spiegel. Dus in het platte vlak spiegelt men in een lijn (de spiegellijn), deze spiegeling wordt wel lijnspiegeling genoemd, en in de ruimte spiegelt men in een vlak (het spiegelvlak), deze spiegeling wordt wel vlakspiegeling genoemd. Met een vlakke spiegel kan men de spiegeling van een figuur (tot aan de spiegel) of voorwerp daadwerkelijk zien. Een formele spiegeling van een voorwerp heeft echter ook betrekking op inwendige, onzichtbare delen.
rdf:langString
기하학에서 반사(反射, 영어: reflection) 또는 대칭 이동(對稱 移動)은 유클리드 공간 위의 점을 어떤 초평면에 대한 ‘거울상’으로 변환시키는 함수이다.
rdf:langString
Em Matemática ou, mais precisamente, em geometria, reflexão é uma transformação geométrica do ponto, da reta, do plano ou do espaço que "espelha" todos os pontos em relação, respectivamente, a um ponto (dito centro de reflexão), uma reta (dita eixo de reflexão ou eixo de simetria) ou um plano (chamado plano de reflexão ou de simetria), transformando o ponto, a reta ou o plano num outro, que lhe é simétrico em relação ao eixo dado. Uma reflexão do plano euclidiano é uma simetria ortogonal em relação a uma reta (reta vetorial, quando se tratar de um plano vetorial euclidiano). Portanto, uma reflexão constitui uma simetria axial ortogonal. Em geral, dentro de um espaço euclidiano qualquer, uma reflexão é uma simetria ortogonal em relação a um hiperplano, isto é, a um subespaço de 1. Em dimensão 3, trata-se portanto de uma simetria ortogonal em relação a um plano. As reflexões, como todas as simetrias, são transformações involutivas. O termo se remete originalmente aos espelhos, que refletem uma imagem. A figura imagem e a figura original são biométricas.
rdf:langString
Отражение, зеркальное отражение или зеркальная симметрия — движение евклидова пространства, множество неподвижных точек которого является гиперплоскостью (в случае трехмерного пространства — просто плоскостью). Термин зеркальная симметрия употребляется также для описания соответствующего типа симметрии объекта, то есть, когда объект при операции отражения переходит в себя. Это математическое понятие описывает соотношение в оптике объектов и их (мнимых) изображений при отражении в плоском зеркале,а также многие законы симметрии (в кристаллографии, химии, физике, биологии и т. д., а также в искусстве и искусствоведении)
rdf:langString
在数学中,反射是把一个物体变换成它的镜像的映射。要反射一个平面图形,需要“镜子”是一条直线(反射轴),对于三维空间中的反射就要使用平面作为镜子。反射有时被认为是圆反演的特殊情情况,参考圆有无限半径。 在几何上说,要找到一个点的反射,可从这个点向反射轴画一条垂线。并在另一边延续相同的距离。要找到一个图形的反射,需要反射这个图形的每个点。 两次反射回到原来的地方。反射保持在点之间的距离。反射不移动在镜子上的点,镜子的维数比发生反射的空间的维数要小1。这些观察允许我们形式化反射的定义:反射是欧几里得空间的对合等距同构,它的不动点集合是余维数为1的仿射子空间。 在经历特定反射后不改变的图形被称为有。 密切关联于反射的是和圆反演。这些变换仍对合于有余维数1的不动点的集合,但它们不再是等距的。
rdf:langString
Відбиття, дзеркальне відбиття, дзеркальна симетрія — рух евклідового простору, множина нерухомих точок якого, є гіперплощиною (у випадку тримірного простору — просто площиною). Термін «дзеркальна симетрія» використовується також для опису відповідного типу симетрії об'єкта, тобто, коли об'єкт під час операції відбиття переходить сам у себе. Це математичне поняття описує співвідношення в оптиці об'єктів і їх (уявних) зображень у разі відбиття у пласкому дзеркалі, а також багато які закони симетрії (у кристалографії, хімії, фізиці, біології і тощо, а також у мистецтві).
xsd:nonNegativeInteger
9396