Rayleigh scattering

http://dbpedia.org/resource/Rayleigh_scattering an entity of type: WikicatAtmosphericOpticalPhenomena

Μοριακή σκέδαση ή σκέδαση Ρέιλι (συνήθως απαντάται ως σκέδαση Rayleigh) είναι το είδος της σκέδασης της ηλεκτρομαγνητικής ακτινοβολίας που οφείλεται στα μόρια του υλικού. Η σκέδαση γίνεται σημαντική όταν το μήκος κύματος της ηλεκτρομαγνητικής ακτινοβολίας είναι αρκετά μεγαλύτερο από τη διάμετρο των μορίων, συνήθως τουλάχιστον 10 φορές μεγαλύτερο. Η σκέδαση Ρέιλι είναι ελαστική, δηλαδή η ενέργεια και συχνότητα της σκεδαζόμενης ακτινοβολίας είναι ίσες με τις αντίστοιχες της προσπίπτουσας. Επιπλέον, η σκέδαση είναι πολωμένη, ενώ είναι εντονότερη κατά τη διεύθυνση της πρόσπτωσης και προς τις δύο κατευθύνσεις. rdf:langString
Rayleighen sakabanaketa edo Rayleighen barreiatzea (Lord Rayleigh fisikariaren omenez izendatua) argiaren edo beste erradiazio elektromagnetikoren deritzo, argia baino uhin-luzera laburragoa duten partikulek eragindakoa. Partikula hauek atomo zein molekula askeak izan daitezke. Argiak solido edota likido gardenetatik zehar bidaiatzen duenean gerta daiteke, baina batez ere, argiak gasetatik zehar bidaiatzen duenean ikus daiteke. Lurreko atmosferan gertatzen den eguzki-argiaren Rayleighen sakabanaketak eragiten du zeruak kolore urdina izatea eta eguzkiak kolore horixka izatea. rdf:langString
Scaipeadh solais (agus tonn eile) ag réada atá beag i gcomparáid le tonnfhad an tsolais. Méadaíonn sé leis an minicíocht i gcumhacht 4. Rinne an Tiarna Rayleigh taighde air seo agus chuir síos air den chéad uair. Scaipeadh Rayleigh sholas na Gréine ag móilíní an aeir is cúis le goirme fhollasach na spéire, mar scaiptear an solas gorm (le tonnfhaid ghearra) níos mó ná na dathanna eile i speictream na Gréine. rdf:langString
레일리 산란(Rayleigh scattering)은 전자기파가 파장보다 매우 작은 입자에 의하여 탄성 산란되는 현상이다. 빛이 기체나 투명한 액체 및 고체를 통과할 때 발생한다. 대기 속에서의 태양광의 레일리 산란은 하늘이 푸르게 보이는 주된 이유다. 공기중의 입자 (주로 산소나 질소)는 가시광선 빛의 파장크기 보다 훨씬 작기 때문이다. 빛이 그의 파장보다 작은 입자를 만날 경우, 빛은 모든 방향으로 산란된다. 따라서 하늘이 파란건 파란빛이 붉은빛 보다 훨씬 더 많이 산란되기 때문이다. 반대로 일출이나 일몰 때 하늘이 붉은 것도 이로 설명할 수 있다. 해질 무렵과 해뜰 무렵에 태양 빛은 더욱 먼 거리를 통과해야 하기 때문에 푸른빛은 거의 다 산란이 되어 아예 없어지고, 하늘에 보이는 빛은 붉은색이나 주황색을 띠게 된다. rdf:langString
Rozpraszanie Rayleigha – model rozpraszania fal elektromagnetycznych, opracowany przez Lorda Rayleigha (rozpraszanie światła na cząsteczkach o rozmiarach mniejszych od długości fali świetlnej). Występuje przy rozchodzeniu się światła w przejrzystych ciałach stałych i cieczach, ale najbardziej efektownie objawia się w gazach. Rozpraszanie Rayleigha na cząsteczkach atmosfery jest przyczyną błękitnego koloru nieba. rdf:langString
レイリー散乱(レイリーさんらん、英: Rayleigh scattering)とは、光の波長よりも小さいサイズの粒子による光の散乱である。透明な液体や固体中でも起きるが、典型的な現象は気体中の散乱であり、日中の空が青く見えるのは、レイリー散乱の周波数特性によるものである。レイリー散乱という名は、この現象の説明を試みたレイリー卿にちなんで名付けられた。 rdf:langString
Rayleighverstrooiing is de verstrooiing van licht door deeltjes die kleiner zijn dan de golflengte van het licht. Het effect werd genoemd naar Lord Rayleigh die het verklaarde. Rayleighverstrooiing treedt op wanneer licht door een transparante vloeistof of vaste stof gaat, maar kan het duidelijkst worden waargenomen bij gassen. Rayleighverstrooiing in de atmosfeer is de reden waarom de onbewolkte lucht blauw is. rdf:langString
Рэле́евское рассе́яние — когерентное рассеяние света без изменения длины волны (называемое также упругим рассеянием) на частицах, неоднородностях или других объектах, когда частота рассеиваемого света существенно меньше собственной частоты рассеивающего объекта или системы. Эквивалентная формулировка: рассеивание света на объектах, размеры которых меньше его длины волны. Названо в честь британского физика лорда Рэлея, установившего зависимость интенсивности рассеянного света от длины волны в 1871 году. В широком смысле также применяется при описании рассеяния в волновых процессах различной природы. rdf:langString
瑞利散射(Rayleigh scattering),由英国物理学家第三代瑞利男爵約翰·斯特拉特(John Strutt, 3rd Baron Rayleigh)的名字命名。它是半径比光或其他電磁輻射的波长小很多的微小颗粒(例如單個原子或分子)对入射光束的散射。瑞利散射在光通過透明的固體和液體時都會發生,但以氣體最為顯著。在大氣中,太陽光的瑞利散射會導致瀰漫天空輻射,這也是天空为藍色和太陽偏黃色的原因。 瑞利散射光的強度和入射光波长λ的四次方成反比: 其中是入射光的光強分布函數。 因此,波長較短的藍光比波長較長的更易產生瑞利散射。 rdf:langString
Релеївське розсіювання — розсіювання світла тілами з розмірами, меншими за довжину хвилі. Термін релеївське розсіювання вживається також для позначення розсіювання світла на флуктуаціях густини речовини. Саме таким розсіюванням зумовлений блакитний колір неба й червоний колір сонця на заході. Релеївське розсіювання пропорційне четвертому степеню частоти. Завдяки цій обставині блакитні промені розсіюються набагато сильніше, ніж червоні. rdf:langString
تبعثر رايلي هو أحد أنواع التبعثر سمي على اسم الفيزيائي البريطاني جون وليم رايلي وهو للضوء أو أي أشعة كهرومغناطيسية أخرى يتبعثر نتيجة تأثير جسيمات أصغر من الطول الموجي للضوء. يمكن أن تكون هذه الجسيمات إما ذرات مستقلة أو جزيئات. يمكن أن يحدث هذا التبعثر عند انتقال الضوء في وسط شفاف صلب أو سائل، لكن أغلب حالات يحدث في الغازات. تبعثر رايلي هو تابع قابلية الاستقطاب الكهربائية للجسيمات. يتسبب تبعثر رايلي لضوء الشمس في الغلاف الجوي ظاهرة النشر الإشعاعي للسماء، وهو السبب الرئيسي للون الأزرق للسماء واللون المصفر للشمس. rdf:langString
La difusió de Rayleigh (que rep el nom en honor de Lord Rayleigh) és la de llum per partícules molt més petites que la longitud d'ona de la llum. Es produeix quan la llum es propaga per medis sòlids i líquids transparents, però és molt més apreciable en els gasos. La difusió de Rayleigh de la llum solar per les partícules de l'atmosfera terrestre és una de les raons principals del color blau del cel. La intensitat I de la llum difusa per una sola partícula d'un feix de llum monocromàtic de longitud d'ona λ i intensitat I0 és donada per: rdf:langString
Rayleighův rozptyl je rozptyl světla na molekulách plynu případně na jiných částicích podstatně menších než vlnová délka světla. Důsledkem Rayleighova rozptylu v atmosféře Země je modrá barva oblohy. Rozptyl světla je důležitý fyzikální jev a může mít různé vlastnosti, podle toho, na čem se světlo rozptyluje - na malých nebo větších částicích nebo na nerovném, matném povrchu. Anglický fyzik John W. Rayleigh při popisu rozptylu světla v zemské atmosféře v roce 1899 vyšel z předpokladu, že světlo rozptylují přímo molekuly vzduchu a spočetl, že intenzita rozptýleného světla silně závisí na jeho vlnové délce (je nepřímo úměrná její čtvrté mocnině). To znamená, že modré světlo s krátkou vlnovou délkou se rozptyluje více než světlo červené. Důsledkem této závislosti je například modrá barva oblo rdf:langString
La disĵeto de Rayleigh (aŭ difuzo de Rayleigh) estas fenomeno de difuzo de ondoj, nomita laŭ John William Strutt, Lordo Rayleigh, kiu malkovris ĝin. La disĵeto de Rayleigh estas difuzo pro materiaj eroj, de elektromagnetaj aŭ sonaj ondoj , kies ondolongo estas multe pli granda, ol la grando de la difuzantaj eroj. Estas tiam , ĉar ĝi fariĝas sen ŝanĝo de energio: la ondolongo ne ŝanĝiĝas. La difuzo de Thomson estas ondodisĵeto rilatanta al libera elektrono, kaj do estas aparta kazo de la difuzo de Rayleigh. rdf:langString
Die Rayleigh-Streuung [ˈreɪlɪ-], benannt nach John William Strutt, 3. Baron Rayleigh, bezeichnet die (hauptsächlich) elastische Streuung elektromagnetischer Wellen an Teilchen, deren Durchmesser klein im Vergleich zur Wellenlänge ist, also etwa bei der Streuung von Licht an kleinen Molekülen. Bei Streuung in der Erdatmosphäre an molekularem Sauerstoff und Stickstoff wird typischerweise auch die inelastische Komponente durch Rotations-Raman-Streuung mit zur Rayleigh-Streuung gezählt, da diese nur eine Verschiebung der Wellenzahl des Photons um weniger als 50 cm−1 bewirkt. Der Wirkungsquerschnitt dieses Beitrags hat die gleiche Wellenlängenabhängigkeit wie die elastische Komponente. rdf:langString
La dispersión de Rayleigh [/ˈreɪli/ ] (en honor a lord Rayleigh, que fue el primero en explicarlo en 1871​) es la dispersión de la luz visible o cualquier otra radiación electromagnética por partículas cuyo tamaño es mucho menor que la longitud de onda de los fotones dispersados. Ocurre cuando la luz viaja por sólidos y fluidos transparentes, pero se ve con mayor frecuencia en los gases. La dispersión de Rayleigh de la luz solar en la atmósfera es la principal razón de que el cielo se vea azul. En el caso de luz polarizada (y si no se puede generalizar) también lo podemos expresar: rdf:langString
Rayleigh scattering (/ˈreɪli/ RAY-lee), named after the 19th-century British physicist Lord Rayleigh (John William Strutt), is the predominantly elastic scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of the radiation. For light frequencies well below the resonance frequency of the scattering particle (normal dispersion regime), the amount of scattering is inversely proportional to the fourth power of the wavelength. rdf:langString
Hamburan Rayleigh (bahasa Inggris: Rayleigh scattering) dinamai berdasarkan seorang fisikawan Inggris Lord Rayleigh (John William Strutt), adalah teori hamburan elastis cahaya atau radiasi elektromagnetik lain oleh partikel-partikel penghambur yang memiliki panjang gelombang lebih kecil dibandingkan dengan cahaya/radiasi yang dihamburkannya. Apabila frekuensi cahaya berada di bawah/lebih kecil dari frekuensi resonansi partikel penghambur (dinamakan rezim dispersi normal), maka jumlah hamburan yang dihasilkan akan berbanding terbalik dengan pangkat empat panjang gelombang cahaya yang dihamburkan. rdf:langString
La diffusion Rayleigh est un mode de diffusion des ondes, par exemple électromagnétiques ou sonores, dont la longueur d'onde est beaucoup plus grande que la taille des particules diffusantes. On parle de diffusion élastique, car cela se fait sans variation d'énergie, autrement dit l'onde conserve la même longueur d'onde. Elle est nommée d'après John William Strutt Rayleigh, qui en a fait la découverte. rdf:langString
La diffusione di Rayleigh (pronunciato /ˈreɪli/, che prende il nome dal fisico britannico Premio Nobel John William Strutt Rayleigh) è lo scattering elastico (o diffusione) di un'onda luminosa provocato da particelle piccole rispetto alla lunghezza d'onda dell'onda stessa, che avviene ad esempio quando la luce attraversa un mezzo torbido, soprattutto gas e liquidi od anche solidi con impurezze o inclusioni. Ancora, lo scattering di Rayleigh nelle molecole dell'aria è il motivo principale per cui il cielo appare di colore azzurro: l'azoto diffonde molto di più la luce azzurra che non quella rossa. rdf:langString
A dispersão de Rayleigh (em homenagem a Lord Rayleigh) é a dispersão da luz ou qualquer outra radiação eletromagnética por partículas muito menores que o comprimento de onda dos fótons dispersados. Ocorre quando a luz viaja por sólidos e líquidos transparentes, mas se observa com maior frequência nos gases. A dispersão de Rayleigh da luz solar na atmosfera é a principal razão pela qual o céu é azul. rdf:langString
Rayleigh-spridning, uppkallad efter den brittiske fysikern Lord Rayleigh, är spridning av ljus eller annan elektromagnetisk strålning i fast, flytande eller gasformig materia. Rayleigh-spridning uppstår när fotoner sprids mot bundna elektroner. (Spridning som orsakas av fria elektroner kallas Thomsonspridning.) Spridaren antas ha mycket mindre storlek än ljusets våglängd. (För större partiklar sker .) Rayleigh-spridning är en elastisk process, där den spridda strålningen har samma frekvens som den inkommande. (Inelastisk ljusspridning som orsakas av bundna elektroner, där ljuset i spridningsprocessen förlorar eller vinner energi och därmed får en lägre eller högre frekvens, benämns Ramanspridning.) rdf:langString
rdf:langString تبعثر رايلي
rdf:langString Difusió de Rayleigh
rdf:langString Rayleighův rozptyl
rdf:langString Rayleigh-Streuung
rdf:langString Μοριακή σκέδαση
rdf:langString Disĵeto de Rayleigh
rdf:langString Dispersión de Rayleigh
rdf:langString Rayleighen sakabanaketa
rdf:langString Scaipeadh Rayleigh
rdf:langString Hamburan Rayleigh
rdf:langString Diffusion Rayleigh
rdf:langString Scattering di Rayleigh
rdf:langString 레일리 산란
rdf:langString レイリー散乱
rdf:langString Rayleighverstrooiing
rdf:langString Rozpraszanie Rayleigha
rdf:langString Rayleigh scattering
rdf:langString Dispersão de Rayleigh
rdf:langString Рэлеевское рассеяние
rdf:langString Rayleigh-spridning
rdf:langString Релеївське розсіювання
rdf:langString 瑞利散射
xsd:integer 26176
xsd:integer 1124293197
rdf:langString La difusió de Rayleigh (que rep el nom en honor de Lord Rayleigh) és la de llum per partícules molt més petites que la longitud d'ona de la llum. Es produeix quan la llum es propaga per medis sòlids i líquids transparents, però és molt més apreciable en els gasos. La difusió de Rayleigh de la llum solar per les partícules de l'atmosfera terrestre és una de les raons principals del color blau del cel. La quantitat de difusió de Rayleigh que pateix un feix de llum depèn de la grandària de les partícules difusores i de la longitud d'ona de la llum. En concret, el coeficient de difusió i, per tant, la intensitat de la llum difusa, depèn inversament de la quarta potència de la longitud d'ona, relació coneguda com a «llei de Rayleigh» (~ 1/λ4). La difusió per part de partícules de grandària superior a un desè de la longitud d'ona es comporta de forma diferent i s'explica amb l'anomenada difusió de Mie, que és una explicació més general de la difusió de radiació electromagnètica. La forta dependència de la difusió amb la longitud d'ona (~1/λ4) significa que a l'atmosfera la llum blava es difon molt més que la vermella. Això provoca que quan la llum del Sol travessa l'atmosfera la component blava es difongui molt més i d'aquesta manera hom veu llum blava de totes direccions, mentre que la part més vermella només es veu en la direcció directa del Sol. Cal remarcar, però, que la teoria de Rayleigh es desenvolupà abans de la mecànica quàntica i, per tant, no es basa en les teories més correctes de la interacció radiació-matèria; nogensmenys, la teoria de Rayleigh és una bona aproximació a la forma en què la llum és difosa per partícules molt més petites que la longitud d'ona de la llum. La intensitat I de la llum difusa per una sola partícula d'un feix de llum monocromàtic de longitud d'ona λ i intensitat I0 és donada per: on R és la distància a la partícula, θ és l'angle de difusió, n és l'índex de refracció de la partícula (del medi) i d és el diàmetre de la partícula. La distribució angular de la difusió, determinada pel terme (1 + cos²θ), és simètrica en el pla perpendicular a la direcció de la llum incident, per tant la difusió cap endavant és igual a la difusió cap enrere. Si integrem sobre tota una esfera obtenim la secció eficaç de difusió Rayleigh, σs: El coeficient de difusió de Rayleigh per a un grup de partícules difusores és igual al nombre de partícules per unitat de volum, N, per la secció eficaç.
rdf:langString تبعثر رايلي هو أحد أنواع التبعثر سمي على اسم الفيزيائي البريطاني جون وليم رايلي وهو للضوء أو أي أشعة كهرومغناطيسية أخرى يتبعثر نتيجة تأثير جسيمات أصغر من الطول الموجي للضوء. يمكن أن تكون هذه الجسيمات إما ذرات مستقلة أو جزيئات. يمكن أن يحدث هذا التبعثر عند انتقال الضوء في وسط شفاف صلب أو سائل، لكن أغلب حالات يحدث في الغازات. تبعثر رايلي هو تابع قابلية الاستقطاب الكهربائية للجسيمات. يتسبب تبعثر رايلي لضوء الشمس في الغلاف الجوي ظاهرة النشر الإشعاعي للسماء، وهو السبب الرئيسي للون الأزرق للسماء واللون المصفر للشمس. يتم حساب التبعثر الناتج عن جسيمات أكبر قليلاً أو مساوية للطول الموجي عن طريق نظرية ماي.
rdf:langString Rayleighův rozptyl je rozptyl světla na molekulách plynu případně na jiných částicích podstatně menších než vlnová délka světla. Důsledkem Rayleighova rozptylu v atmosféře Země je modrá barva oblohy. Rozptyl světla je důležitý fyzikální jev a může mít různé vlastnosti, podle toho, na čem se světlo rozptyluje - na malých nebo větších částicích nebo na nerovném, matném povrchu. Anglický fyzik John W. Rayleigh při popisu rozptylu světla v zemské atmosféře v roce 1899 vyšel z předpokladu, že světlo rozptylují přímo molekuly vzduchu a spočetl, že intenzita rozptýleného světla silně závisí na jeho vlnové délce (je nepřímo úměrná její čtvrté mocnině). To znamená, že modré světlo s krátkou vlnovou délkou se rozptyluje více než světlo červené. Důsledkem této závislosti je například modrá barva oblohy, vznikající při průchodu slunečního světla zemskou atmosférou. Nutnou podmínkou ovšem je, aby polohy jednotlivých rozptylujících center (molekul, atomů) byly náhodné. Na to poukázali počátkem 20. století Marian Smoluchowski a Albert Einstein. Tato podmínka je splněna například v plynu. Pokud nejsou polohy rozptylujících center náhodné, pak se stává rozptyl koherentním, což vede k jevu difrakce záření. Rayleighův rozptyl nebyl pozorován pouze v atmosféře naší Země. Hraje důležitou roli ve stavbě chladných hvězd (zejména hvězd populace II), ve kterých převažuje vodík v neutrálním stavu (ionizovaný vodík nemá diskrétní energetické hladiny, proto na něm k Rayleighově rozptylu nedochází). Rayleighův rozptyl byl pozorován také v atmosférách exoplanet. Rayleighův rozptyl úzce souvisí s jiným druhem rozptylu, s Ramanovým rozptylem. Zatímco se při Rayleighově rozptylu frekvence záření nemění, při Ramanově rozptylu je frekvence dopadajícího a rozptýleného záření různá. K rozvoji moderní teorie rozptylu výraznou měrou přispěl český fyzik Georg Placzek.
rdf:langString Die Rayleigh-Streuung [ˈreɪlɪ-], benannt nach John William Strutt, 3. Baron Rayleigh, bezeichnet die (hauptsächlich) elastische Streuung elektromagnetischer Wellen an Teilchen, deren Durchmesser klein im Vergleich zur Wellenlänge ist, also etwa bei der Streuung von Licht an kleinen Molekülen. Bei Streuung in der Erdatmosphäre an molekularem Sauerstoff und Stickstoff wird typischerweise auch die inelastische Komponente durch Rotations-Raman-Streuung mit zur Rayleigh-Streuung gezählt, da diese nur eine Verschiebung der Wellenzahl des Photons um weniger als 50 cm−1 bewirkt. Der Wirkungsquerschnitt dieses Beitrags hat die gleiche Wellenlängenabhängigkeit wie die elastische Komponente. Der Streuquerschnitt der Rayleigh-Streuung ist proportional zur vierten Potenz der Frequenz der elektromagnetischen Welle. Dies gilt nicht nur für unabhängig streuende Teilchen, also bei Teilchenabständen größer als die Kohärenzlänge der Strahlung, sondern auch bei höherer Teilchenkonzentration für die Streuung an Inhomogenitäten des Brechungsindex durch eine statistische Anordnung der Teilchen, beispielsweise in Gasen oder Gläsern. Blaues Licht hat eine höhere Frequenz als rotes und wird daher stärker gestreut. Die frequenzabhängig unterschiedlich starke Streuung von Sonnenlicht an den Teilchen der Erdatmosphäre bewirkt das Himmelsblau am Tag, und die Morgenröte wie die Abendröte während der Dämmerung. Dicht über dem Horizont stehend erscheint ebenso der Mond rötlich. Rayleigh-Streuung tritt auf, da das einfallende Licht die Elektronen eines Moleküls anregt und ein Dipolmoment induziert, welches genauso schwingt wie die einfallende elektromagnetische Strahlung. Das induzierte Dipolmoment wirkt nun wie ein Hertzscher Dipol und sendet Licht aus, das dieselbe Wellenlänge wie das einfallende Licht besitzt.
rdf:langString Μοριακή σκέδαση ή σκέδαση Ρέιλι (συνήθως απαντάται ως σκέδαση Rayleigh) είναι το είδος της σκέδασης της ηλεκτρομαγνητικής ακτινοβολίας που οφείλεται στα μόρια του υλικού. Η σκέδαση γίνεται σημαντική όταν το μήκος κύματος της ηλεκτρομαγνητικής ακτινοβολίας είναι αρκετά μεγαλύτερο από τη διάμετρο των μορίων, συνήθως τουλάχιστον 10 φορές μεγαλύτερο. Η σκέδαση Ρέιλι είναι ελαστική, δηλαδή η ενέργεια και συχνότητα της σκεδαζόμενης ακτινοβολίας είναι ίσες με τις αντίστοιχες της προσπίπτουσας. Επιπλέον, η σκέδαση είναι πολωμένη, ενώ είναι εντονότερη κατά τη διεύθυνση της πρόσπτωσης και προς τις δύο κατευθύνσεις.
rdf:langString La disĵeto de Rayleigh (aŭ difuzo de Rayleigh) estas fenomeno de difuzo de ondoj, nomita laŭ John William Strutt, Lordo Rayleigh, kiu malkovris ĝin. La disĵeto de Rayleigh estas difuzo pro materiaj eroj, de elektromagnetaj aŭ sonaj ondoj , kies ondolongo estas multe pli granda, ol la grando de la difuzantaj eroj. Estas tiam , ĉar ĝi fariĝas sen ŝanĝo de energio: la ondolongo ne ŝanĝiĝas. La difuzo de Thomson estas ondodisĵeto rilatanta al libera elektrono, kaj do estas aparta kazo de la difuzo de Rayleigh. Kiam la difuzantaj eroj havas sufiĉe grandajn dimensiojn rilate al la ondolongo, necesas uzi alian teorion, kia la teorio de . La difuzo de Rayleigh estas aparta kazo de la disĵeto de Mie.
rdf:langString La dispersión de Rayleigh [/ˈreɪli/ ] (en honor a lord Rayleigh, que fue el primero en explicarlo en 1871​) es la dispersión de la luz visible o cualquier otra radiación electromagnética por partículas cuyo tamaño es mucho menor que la longitud de onda de los fotones dispersados. Ocurre cuando la luz viaja por sólidos y fluidos transparentes, pero se ve con mayor frecuencia en los gases. La dispersión de Rayleigh de la luz solar en la atmósfera es la principal razón de que el cielo se vea azul. La dispersión de Rayleigh es el resultado de la polarización eléctrica de las partículas. El campo eléctrico oscilatorio de una onda luminosa actúa sobre las cargas de las partículas provocando que oscilen en la misma frecuencia. La partícula se convierte en un pequeño dipolo radiante cuya radiación visible es la luz dispersada. Si bien el término dispersión está muy extendido en la literatura científica (junto con el anglicismo scattering, que a menudo se encuentra sin traducir en textos en español), el término recomendado por la Real Academia de Ciencias Exactas, Físicas y Naturales es esparcimiento, recomendando el uso de dispersión a la dispersión de la luz en los diversos colores que componen su espectro. Si el tamaño de las partículas es mayor que la longitud de onda, la luz no se separa, no se dispersa en todas las longitudes de onda que la componen, como cuando al atravesar una nube, esta se ve blanca, lo mismo pasa cuando atraviesa los granos de sal y de azúcar. Para que la luz se disperse, el tamaño de las partículas debe ser similar o menor que la longitud de onda. El grado de dispersión de Rayleigh que sufre un rayo de luz depende del tamaño de las partículas y de la longitud de onda de la luz; en concreto, del y por lo tanto la intensidad de la luz dispersada depende inversamente de la cuarta potencia de la longitud de onda, relación conocida como ley de Rayleigh. La dispersión de luz por partículas mayores a un décimo de la longitud de onda se explica con la teoría de Mie, que es una explicación más general de la difusión de radiación electromagnética. La intensidad I de la luz dispersada por una pequeña partícula en un haz de luz de longitud de onda λ e intensidad I0 viene dada por: donde R es la distancia a la partícula, θ es el ángulo de dispersión, n es el índice de refracción de la partícula y d es el diámetro de la partícula. En el caso de luz polarizada (y si no se puede generalizar) también lo podemos expresar: donde ahora, aparte de los símbolos anteriores tenemos el σ, y los ángulos en coordenadas esféricas θ y Φ. En estos, los vectores unitarios se definen respecto al plano que contiene al vector de dirección de propagación de la radiación y al vector que contiene la dirección de la polarización de la onda incidente. Aparte tenemos los coeficientes de la perpendicular A(θ) y paralelo B(θ) al plano de esparcimiento o dispersión. La distribución angular de la dispersión de Rayleigh, que viene dada por la fórmula (1+cos2θ), es simétrica en el plano perpendicular a la dirección de la luz incidente, por tanto la luz dispersada iguala a la luz incidente. Integrando el área de la esfera que rodea una partícula obtenemos la sección transversal de la dispersión de Rayleigh, σs: El coeficiente de dispersión de Rayleigh para un grupo de partículas es el número de partículas por unidad de volumen N veces la sección transversal. Como en todos los efectos de onda, en la dispersión incoherente las potencias son sumadas aritméticamente, mientras que en la dispersión coherente -como sucede cuando las partículas están muy cerca unas de otras- los campos son sumados aritméticamente y la suma debe ser elevada al cuadrado, para obtener la potencia final. La fuerte dependencia de la dispersión con la longitud de onda (~λ-4) supone que en la atmósfera la luz azul y violeta de longitud de onda más corta se dispersará más que las longitudes de onda más larga (luz amarilla y especialmente la luz roja). En la atmósfera, esto provoca que los fotones de luz azul se dispersen mucho más que los de longitudes de onda mayores a 490 nm; por este motivo vemos el cielo azulado en todas direcciones (que en realidad es una mezcla de todos los colores dispersos, principalmente azul y verde) y solo lo vemos enrojecido cuando el Sol se encuentra próximo al horizonte, debido a que la luz atraviesa mucho más espesor de atmósfera más cercana a la superficie de la tierra, donde es más densa y los rayos que nos llegan están muy empobrecidos en fotones de luz de longitud de onda más corta (azul) y de longitud de onda media (verde), previamente dispersados de la ruta directa del observador. Por lo tanto, la luz restante no dispersada es principalmente de longitudes de onda más larga y parece más roja. Cabe destacar que, a pesar del uso del término fotón, la ley de dispersión de Rayleigh fue desarrollada antes de la invención de la mecánica cuántica y, por lo tanto, no se basa fundamentalmente en la teoría moderna sobre la interacción de la luz con la materia. No obstante, la dispersión de Rayleigh es una buena aproximación a la forma en que la luz es dispersada por partículas mucho más pequeñas que su longitud de onda.
rdf:langString Rayleighen sakabanaketa edo Rayleighen barreiatzea (Lord Rayleigh fisikariaren omenez izendatua) argiaren edo beste erradiazio elektromagnetikoren deritzo, argia baino uhin-luzera laburragoa duten partikulek eragindakoa. Partikula hauek atomo zein molekula askeak izan daitezke. Argiak solido edota likido gardenetatik zehar bidaiatzen duenean gerta daiteke, baina batez ere, argiak gasetatik zehar bidaiatzen duenean ikus daiteke. Lurreko atmosferan gertatzen den eguzki-argiaren Rayleighen sakabanaketak eragiten du zeruak kolore urdina izatea eta eguzkiak kolore horixka izatea.
rdf:langString La diffusion Rayleigh est un mode de diffusion des ondes, par exemple électromagnétiques ou sonores, dont la longueur d'onde est beaucoup plus grande que la taille des particules diffusantes. On parle de diffusion élastique, car cela se fait sans variation d'énergie, autrement dit l'onde conserve la même longueur d'onde. Lorsque les particules ont une taille suffisamment grande devant la longueur d'onde incidente, il faut utiliser d'autres théories comme la théorie de Mie qui fournit une solution exacte à la diffusion par des particules sphériques de taille quelconque (la diffusion Rayleigh est un cas limite de la théorie de Mie). Elle est nommée d'après John William Strutt Rayleigh, qui en a fait la découverte.
rdf:langString Scaipeadh solais (agus tonn eile) ag réada atá beag i gcomparáid le tonnfhad an tsolais. Méadaíonn sé leis an minicíocht i gcumhacht 4. Rinne an Tiarna Rayleigh taighde air seo agus chuir síos air den chéad uair. Scaipeadh Rayleigh sholas na Gréine ag móilíní an aeir is cúis le goirme fhollasach na spéire, mar scaiptear an solas gorm (le tonnfhaid ghearra) níos mó ná na dathanna eile i speictream na Gréine.
rdf:langString Rayleigh scattering (/ˈreɪli/ RAY-lee), named after the 19th-century British physicist Lord Rayleigh (John William Strutt), is the predominantly elastic scattering of light or other electromagnetic radiation by particles much smaller than the wavelength of the radiation. For light frequencies well below the resonance frequency of the scattering particle (normal dispersion regime), the amount of scattering is inversely proportional to the fourth power of the wavelength. Rayleigh scattering results from the electric polarizability of the particles. The oscillating electric field of a light wave acts on the charges within a particle, causing them to move at the same frequency. The particle, therefore, becomes a small radiating dipole whose radiation we see as scattered light. The particles may be individual atoms or molecules; it can occur when light travels through transparent solids and liquids, but is most prominently seen in gases. Rayleigh scattering of sunlight in Earth's atmosphere causes diffuse sky radiation, which is the reason for the blue color of the daytime and twilight sky, as well as the yellowish to reddish hue of the low Sun. Sunlight is also subject to Raman scattering, which changes the rotational state of the molecules and gives rise to polarization effects. Scattering by particles with a size comparable to or larger than the wavelength of the light is typically treated by the Mie theory, the discrete dipole approximation and other computational techniques. Rayleigh scattering applies to particles that are small with respect to wavelengths of light, and that are optically "soft" (i.e., with a refractive index close to 1). Anomalous diffraction theory applies to optically soft but larger particles.
rdf:langString Hamburan Rayleigh (bahasa Inggris: Rayleigh scattering) dinamai berdasarkan seorang fisikawan Inggris Lord Rayleigh (John William Strutt), adalah teori hamburan elastis cahaya atau radiasi elektromagnetik lain oleh partikel-partikel penghambur yang memiliki panjang gelombang lebih kecil dibandingkan dengan cahaya/radiasi yang dihamburkannya. Apabila frekuensi cahaya berada di bawah/lebih kecil dari frekuensi resonansi partikel penghambur (dinamakan rezim dispersi normal), maka jumlah hamburan yang dihasilkan akan berbanding terbalik dengan pangkat empat panjang gelombang cahaya yang dihamburkan. Perubahan polaritas elektrik partikel-partikel di udara menyebabkan hamburan Rayleigh. Medan listrik yang berosilasi dalam gelombang cahaya berinteraksi dengan elektron dalam partikel dan menyebabkan muatan tersebut ikut berosilasi (bergerak bolak-balik) dengan frekuensi yang sama dengan medan listrik cahaya datang. Partikel-partikel inilah yang bisa diamati sebagai sinar hamburan, atau dengan kata lain partikel-partikel itu menjadi dipol-dipol yang meradiasikan sinar hamburan. Partikel-partikel yang dapat menghamburkan tersebut bisa terdiri dari banyak atom dan molekul. Kebanyakan hamburan yang diamati terjadi ketika cahaya melewati medium berupa gas, namun peristiwa hamburan Rayleigh juga bisa terjadi di medium padat dan cair. Hamburan Rayleigh yang terjadi pada sinar matahari ketika melewati atmosfer bumi menyebabkan warna biru di langit, termasuk juga corak kuning-merah di langit ketika posisi matahari di bawah cakrawala atau pada saat sebelum terbit dan setelah terbenam matahari. Cahaya matahari juga mengalami peristiwa hamburan Raman, yaitu teori hamburan inelastis cahaya yang selain menyebabkan perubahan arah partikel cahaya (foton) seperti hamburan Rayleigh, juga menyebabkan perpindahan energi (dalam bentuk rotasi) antara dua partikel yang bertumbuk. Hamburan oleh partikel penghambur yang memiliki panjang gelombang lebih besar atau hampir sama dengan panjang gelombang cahaya bisa dianalisis menggunakan teori Mie, pendekatan dipol diskrit, dan teknik-teknik komputasi lainnya. Teori hamburan Rayleigh bisa digunakan terbatas pada partikel yang lebih kecil panjang gelombangnya dibandingkan cahaya yang dihamburkan dan umumnya memiliki indeks bias ≅ 1.
rdf:langString La diffusione di Rayleigh (pronunciato /ˈreɪli/, che prende il nome dal fisico britannico Premio Nobel John William Strutt Rayleigh) è lo scattering elastico (o diffusione) di un'onda luminosa provocato da particelle piccole rispetto alla lunghezza d'onda dell'onda stessa, che avviene ad esempio quando la luce attraversa un mezzo torbido, soprattutto gas e liquidi od anche solidi con impurezze o inclusioni. Ancora, lo scattering di Rayleigh nelle molecole dell'aria è il motivo principale per cui il cielo appare di colore azzurro: l'azoto diffonde molto di più la luce azzurra che non quella rossa. In particolare, questo scattering avviene per radiazione meno energetica dell'energia di legame dell'elettrone con l'atomo. In questa condizione, il fotone non può intaccare la struttura interna dell'atomo e così la sua energia non cambia. Poiché la diffusione è elastica, la radiazione diffusa ha la stessa frequenza (e lunghezza d'onda) di quella incidente. La radiazione diffusa è detta anche radiazione Rayleigh. Lo scattering Rayleigh si ottiene teoricamente come generalizzazione dello scattering Thomson: il secondo è quello di un fotone incidente su un elettrone legato, mentre il primo è quello di un fotone incidente su un insieme di elettroni legati (dunque, un atomo).
rdf:langString 레일리 산란(Rayleigh scattering)은 전자기파가 파장보다 매우 작은 입자에 의하여 탄성 산란되는 현상이다. 빛이 기체나 투명한 액체 및 고체를 통과할 때 발생한다. 대기 속에서의 태양광의 레일리 산란은 하늘이 푸르게 보이는 주된 이유다. 공기중의 입자 (주로 산소나 질소)는 가시광선 빛의 파장크기 보다 훨씬 작기 때문이다. 빛이 그의 파장보다 작은 입자를 만날 경우, 빛은 모든 방향으로 산란된다. 따라서 하늘이 파란건 파란빛이 붉은빛 보다 훨씬 더 많이 산란되기 때문이다. 반대로 일출이나 일몰 때 하늘이 붉은 것도 이로 설명할 수 있다. 해질 무렵과 해뜰 무렵에 태양 빛은 더욱 먼 거리를 통과해야 하기 때문에 푸른빛은 거의 다 산란이 되어 아예 없어지고, 하늘에 보이는 빛은 붉은색이나 주황색을 띠게 된다.
rdf:langString Rozpraszanie Rayleigha – model rozpraszania fal elektromagnetycznych, opracowany przez Lorda Rayleigha (rozpraszanie światła na cząsteczkach o rozmiarach mniejszych od długości fali świetlnej). Występuje przy rozchodzeniu się światła w przejrzystych ciałach stałych i cieczach, ale najbardziej efektownie objawia się w gazach. Rozpraszanie Rayleigha na cząsteczkach atmosfery jest przyczyną błękitnego koloru nieba.
rdf:langString レイリー散乱(レイリーさんらん、英: Rayleigh scattering)とは、光の波長よりも小さいサイズの粒子による光の散乱である。透明な液体や固体中でも起きるが、典型的な現象は気体中の散乱であり、日中の空が青く見えるのは、レイリー散乱の周波数特性によるものである。レイリー散乱という名は、この現象の説明を試みたレイリー卿にちなんで名付けられた。
rdf:langString A dispersão de Rayleigh (em homenagem a Lord Rayleigh) é a dispersão da luz ou qualquer outra radiação eletromagnética por partículas muito menores que o comprimento de onda dos fótons dispersados. Ocorre quando a luz viaja por sólidos e líquidos transparentes, mas se observa com maior frequência nos gases. A dispersão de Rayleigh da luz solar na atmosfera é a principal razão pela qual o céu é azul. Se o tamanho das partículas é maior que o comprimento de onda, a luz não se decompõe em suas componentes cromáticas e todos os comprimentos de onda são igualmente dispersados, motivo pelo qual, ao atravessar uma nuvem, esta se vê como branca; o mesmo ocorrendo quando atravessa os grãos de sal e de açúcar. Para que a luz seja dispersada, o tamanho das partículas deve ser similar ou menor que o comprimento de onda. O grau de dispersão de Rayleigh que sofre um raio de luz depende do tamanho das partículas e do comprimento de onda da luz, dependências expressas de fato no coeficiente de dispersão; a intensidade da luz dispersada depende inversamente da quarta potência do comprimento de onda, relação conhecida como Lei de Rayleigh-Jeans. A dispersão de luz por partículas maiores a um décimo do comprimento de onda se explica com a teoria de Mie, que é uma explicação mais geral da difusão de radiação electromagnética.
rdf:langString Rayleighverstrooiing is de verstrooiing van licht door deeltjes die kleiner zijn dan de golflengte van het licht. Het effect werd genoemd naar Lord Rayleigh die het verklaarde. Rayleighverstrooiing treedt op wanneer licht door een transparante vloeistof of vaste stof gaat, maar kan het duidelijkst worden waargenomen bij gassen. Rayleighverstrooiing in de atmosfeer is de reden waarom de onbewolkte lucht blauw is.
rdf:langString Rayleigh-spridning, uppkallad efter den brittiske fysikern Lord Rayleigh, är spridning av ljus eller annan elektromagnetisk strålning i fast, flytande eller gasformig materia. Rayleigh-spridning uppstår när fotoner sprids mot bundna elektroner. (Spridning som orsakas av fria elektroner kallas Thomsonspridning.) Spridaren antas ha mycket mindre storlek än ljusets våglängd. (För större partiklar sker .) Rayleigh-spridning är en elastisk process, där den spridda strålningen har samma frekvens som den inkommande. (Inelastisk ljusspridning som orsakas av bundna elektroner, där ljuset i spridningsprocessen förlorar eller vinner energi och därmed får en lägre eller högre frekvens, benämns Ramanspridning.) Ett exempel på Rayleigh-spridning är himlens blå färg. Sannolikheten för Rayleigh-spridning är nämligen proportionell mot λ-4, där λ är våglängden, vilket innebär att ljus med kort våglängd, det vill säga blått ljus, sprids mest, och atmosfären ser således blå ut. Allteftersom ljuset passerar genom atmosfären sprids de kortvågiga (blå) komponenterna mer, och de delar av ljuset som inte sprids får ett proportionellt sett större och större inslag av de långvågiga (röda) komponenterna. Av den anledningen blir solen rödare och rödare vid solnedgång, eftersom ljuset då går en allt längre väg genom atmosfären. Rayleigh-spridning kan användas för att mäta den lokala densiteten hos gaser, och indirekt temperaturen i de fall där trycket är konstant. Rayleigh-Thomson-spridning av röntgenstrålning i kristaller ger upphov till diffraktion som används inom röntgenkristallografin.
rdf:langString Рэле́евское рассе́яние — когерентное рассеяние света без изменения длины волны (называемое также упругим рассеянием) на частицах, неоднородностях или других объектах, когда частота рассеиваемого света существенно меньше собственной частоты рассеивающего объекта или системы. Эквивалентная формулировка: рассеивание света на объектах, размеры которых меньше его длины волны. Названо в честь британского физика лорда Рэлея, установившего зависимость интенсивности рассеянного света от длины волны в 1871 году. В широком смысле также применяется при описании рассеяния в волновых процессах различной природы.
rdf:langString 瑞利散射(Rayleigh scattering),由英国物理学家第三代瑞利男爵約翰·斯特拉特(John Strutt, 3rd Baron Rayleigh)的名字命名。它是半径比光或其他電磁輻射的波长小很多的微小颗粒(例如單個原子或分子)对入射光束的散射。瑞利散射在光通過透明的固體和液體時都會發生,但以氣體最為顯著。在大氣中,太陽光的瑞利散射會導致瀰漫天空輻射,這也是天空为藍色和太陽偏黃色的原因。 瑞利散射光的強度和入射光波长λ的四次方成反比: 其中是入射光的光強分布函數。 因此,波長較短的藍光比波長較長的更易產生瑞利散射。
rdf:langString Релеївське розсіювання — розсіювання світла тілами з розмірами, меншими за довжину хвилі. Термін релеївське розсіювання вживається також для позначення розсіювання світла на флуктуаціях густини речовини. Саме таким розсіюванням зумовлений блакитний колір неба й червоний колір сонця на заході. Релеївське розсіювання пропорційне четвертому степеню частоти. Завдяки цій обставині блакитні промені розсіюються набагато сильніше, ніж червоні.
xsd:nonNegativeInteger 26491

data from the linked data cloud