Quantum computing
http://dbpedia.org/resource/Quantum_computing an entity of type: Thing
الحساب الكمومي (بالإنجليزية: Quantum computing) هو أي وسيلة تعتمد على مبادئ ميكانيكا الكم وظواهره، مثل حالة التراكب الكمي والتشابك الكمي، للقيام بمعالجة البيانات. في الحواسيب التقليدية، تكون كمية البيانات مقاسة بالبت: أما في الحاسوب الكمي فتقاس كمية البيانات بالكيوبت qubit (اختصارا ل Quantum bits). المبدأ الأساسي للحوسبة الكمية هي القدرة على الاستفادة من الخواص الكمية للجسيمات لتمثيل البيانات ومعالجتها، إضافة لاستخدام قواعد ميكانيكا الكم لبناء وتنفيذ التعليمات والعمليات على هذه البيانات.
rdf:langString
La computación cuántica o informática cuántica es un paradigma de computación distinto al de la informática clásica o . Se basa en el uso de cubits, una especial combinación de unos y ceros. Los bits de la computación clásica pueden estar en 1 o en 0, pero solo un estado a la vez, en tanto que el cubits puede tener los dos estados simultáneamente. Esto da lugar a nuevas puertas lógicas que hacen posibles nuevos algoritmos.
rdf:langString
Konputagailu kuantikoak edo ordenagailu kuantikoak konputazio kuantikoan oinarritzen diren ordenagailuak dira. Honek esan nahi du ohiko konputagailuek ez bezala qbit-ekin lan egiten dutela, eta ez bitekin.
rdf:langString
Is éard is ríomhaireacht chandamach ann ná feidhm a bhaint as feiniméin meicnic-chandamacha amhail agus i gcóras ríomhaireachta. Tugtar ríomhaire candamach ar ríomhaire a dhéanann ríomhanna candamacha. Creidtear go bhfuil ríomhairí candamacha in acmhainn fadhbanna ríomhaireachtúila a réiteach i bhfad níos gasta ná ríomhairí clasaiceacha. Mar shampla, an fachtóiriú slánuimhir atá ina chnámh droma don siúd . Tá staidéar na ríomhaireachta candamaí ina foréimse d'eolaíocht na faisnéise candamaí.
rdf:langString
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers are too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science.
rdf:langString
A computação quântica é a ciência que estuda as aplicações das teorias e propriedades da mecânica quântica na Ciência da Computação. Dessa forma seu principal foco é o desenvolvimento do computador quântico. Na computação clássica o computador é baseado na arquitetura de Von Neumann que faz uma distinção clara entre elementos de processamento e armazenamento de dados, isto é, possui processador e memória destacados por um barramento de comunicação, sendo seu processamento sequencial.
rdf:langString
rdf:langString
Quantum computing
rdf:langString
حساب كمومي
rdf:langString
Computación cuántica
rdf:langString
Konputazio kuantiko
rdf:langString
Ríomhaireacht chandamach
rdf:langString
Computação quântica
rdf:langString
Kvantberäkning
rdf:langString
量子计算
xsd:integer
25220
xsd:integer
1124428578
rdf:langString
p/q130020
rdf:langString
yes
rdf:langString
Quantum computation, theory of
rdf:langString
الحساب الكمومي (بالإنجليزية: Quantum computing) هو أي وسيلة تعتمد على مبادئ ميكانيكا الكم وظواهره، مثل حالة التراكب الكمي والتشابك الكمي، للقيام بمعالجة البيانات. في الحواسيب التقليدية، تكون كمية البيانات مقاسة بالبت: أما في الحاسوب الكمي فتقاس كمية البيانات بالكيوبت qubit (اختصارا ل Quantum bits). المبدأ الأساسي للحوسبة الكمية هي القدرة على الاستفادة من الخواص الكمية للجسيمات لتمثيل البيانات ومعالجتها، إضافة لاستخدام قواعد ميكانيكا الكم لبناء وتنفيذ التعليمات والعمليات على هذه البيانات.
rdf:langString
La computación cuántica o informática cuántica es un paradigma de computación distinto al de la informática clásica o . Se basa en el uso de cubits, una especial combinación de unos y ceros. Los bits de la computación clásica pueden estar en 1 o en 0, pero solo un estado a la vez, en tanto que el cubits puede tener los dos estados simultáneamente. Esto da lugar a nuevas puertas lógicas que hacen posibles nuevos algoritmos. Una misma tarea puede tener diferente complejidad en computación clásica comparada con la que tiene en computación cuántica, lo que ha dado lugar a una gran expectación, ya que algunos problemas intratables pasan a ser tratables. Mientras que un computador clásico equivale a una máquina de Turing, un computador cuántico equivale a una máquina de Turing cuántica. El enfoque de las computadoras cuánticas es resolver problemas de una manera fundamentalmente nueva. Los investigadores esperan que con este nuevo enfoque de la computación puedan comenzar a explorarse algunos problemas que nunca podremos resolver de otra manera. La doctora Talia Gershon (directora de Estrategia de Investigación e Iniciativas de Crecimiento en IBM) describe la computación cuántica, de manera muy general, como una combinación entre tres factores: la superposición de giros, el entrelazamiento de dos objetos y la interferencia, la cual ayuda a controlar los estados cuánticos y amplificar los tipos de señales que están orientados hacia la respuesta correcta, y luego cancelar los tipos de señales que conducen a la respuesta incorrecta.
rdf:langString
Konputagailu kuantikoak edo ordenagailu kuantikoak konputazio kuantikoan oinarritzen diren ordenagailuak dira. Honek esan nahi du ohiko konputagailuek ez bezala qbit-ekin lan egiten dutela, eta ez bitekin. Qbit-ek 3 egoera logiko izan ditzakete, ohiko bit-ak dituen 0 eta 1 eta hirugarren kasu berezi bat, 0 eta 1 aldi berean dituen kasua. Fisika kuantikoak dioenez bi posizioak batera eduki ditzakegu ‘superpotentzia’ deritzon fenomeno batean. Hirugarren egoera honetaz gain, konputagailu kuantikoek ate logiko bereziagoak (ate kuantikoak) eta batez ere algoritmo berrien inplementazioa ahalbidetzen dute.
rdf:langString
Is éard is ríomhaireacht chandamach ann ná feidhm a bhaint as feiniméin meicnic-chandamacha amhail agus i gcóras ríomhaireachta. Tugtar ríomhaire candamach ar ríomhaire a dhéanann ríomhanna candamacha. Creidtear go bhfuil ríomhairí candamacha in acmhainn fadhbanna ríomhaireachtúila a réiteach i bhfad níos gasta ná ríomhairí clasaiceacha. Mar shampla, an fachtóiriú slánuimhir atá ina chnámh droma don siúd . Tá staidéar na ríomhaireachta candamaí ina foréimse d'eolaíocht na faisnéise candamaí. Tá fréamhacha na ríomhaireachta candamaí le fáil i na bliana 1935. Thóg an fisiceoir an chéad chéim eile ag tús na 1980idí nuair a mhol sé leagan meicnic-chandamach de mheaisín Turing. Ina dhiaidh sin, dhearbhaigh Richard Feynman agus go mbeadh sé de chumas ag ríomhaire candamach rudaí a ionsamhlú nach mbeadh indéanta ag ríomhaire clasaiceach ariamh. Is é an canghiotán (giotán candamach) an bun-aonad eolais, cosúil leis an ngiotán sa ríomhaireacht clasaiceach.
rdf:langString
Quantum computing is a type of computation whose operations can harness the phenomena of quantum mechanics, such as superposition, interference, and entanglement. Devices that perform quantum computations are known as quantum computers. Though current quantum computers are too small to outperform usual (classical) computers for practical applications, larger realizations are believed to be capable of solving certain computational problems, such as integer factorization (which underlies RSA encryption), substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science. There are several models of quantum computation with the most widely used being quantum circuits. Other models include the quantum Turing machine, quantum annealing, and adiabatic quantum computation. Most models are based on the quantum bit, or "qubit", which is somewhat analogous to the bit in classical computation. A qubit can be in a 1 or 0 quantum state, or in a superposition of the 1 and 0 states. When it is measured, however, it is always 0 or 1; the probability of either outcome depends on the qubit's quantum state immediately prior to measurement. One model that does not use qubits is continuous variable quantum computation. Efforts towards building a physical quantum computer focus on technologies such as transmons, ion traps and topological quantum computers, which aim to create high-quality qubits. These qubits may be designed differently, depending on the full quantum computer's computing model, as to whether quantum logic gates, quantum annealing, or adiabatic quantum computation are employed. There are currently a number of significant obstacles to constructing useful quantum computers. It is particularly difficult to maintain qubits' quantum states, as they suffer from quantum decoherence. Quantum computers therefore require error correction. Any computational problem that can be solved by a classical computer can also be solved by a quantum computer. Conversely, any problem that can be solved by a quantum computer can also be solved by a classical computer, at least in principle given enough time. In other words, quantum computers obey the Church–Turing thesis. This means that while quantum computers provide no additional advantages over classical computers in terms of computability, quantum algorithms for certain problems have significantly lower time complexities than corresponding known classical algorithms. Notably, quantum computers are believed to be able to quickly solve certain problems that no classical computer could solve in any feasible amount of time—a feat known as "quantum supremacy." The study of the computational complexity of problems with respect to quantum computers is known as quantum complexity theory.
rdf:langString
A computação quântica é a ciência que estuda as aplicações das teorias e propriedades da mecânica quântica na Ciência da Computação. Dessa forma seu principal foco é o desenvolvimento do computador quântico. Na computação clássica o computador é baseado na arquitetura de Von Neumann que faz uma distinção clara entre elementos de processamento e armazenamento de dados, isto é, possui processador e memória destacados por um barramento de comunicação, sendo seu processamento sequencial. Entretanto os computadores atuais possuem limitações, como por exemplo na área de Inteligência Artificial (IA), onde não existem computadores com potência ou velocidade de processamento suficiente para suportar uma IA avançada. Dessa forma surgiu a necessidade da criação de um computador alternativo dos usuais que resolvesse problemas de IA, ou outros como a fatoração em primos de números muito grandes, logaritmos discretos e simulação de problemas da Física Quântica. A Lei de Moore afirma que a velocidade de um computador é dobrada a cada 12 meses. Assim sempre houve um crescimento constante na velocidade de processamento dos computadores. Entretanto essa evolução tem um certo limite, um ponto onde não será possível aumentar essa velocidade e então se fez necessária uma revolução significativa na computação para que este obstáculo fosse quebrado. E assim os estudos em Computação Quântica se tornaram muito importantes e a necessidade do desenvolvimento de uma máquina extremamente eficiente se torna maior a cada dia.
rdf:langString
yes
xsd:nonNegativeInteger
99943