Probability density function

http://dbpedia.org/resource/Probability_density_function an entity of type: Thing

في نظرية الاحتمالات، دالة الكثافة الاحتمالية (د.ك.ا) (بالإنجليزية: probability density function)‏ أو (pdf) هي الدالة الممثلة لأي توزيع احتمالي عن طريق التكامل. وتكون دالة الكثافة الاحتمالية موجبة دائمًا، كما يكون تكاملها من ∞- إلى ∞+ مساويًا لواحد: يمكن وصف دالة الكثافة الاحتمالية بأنها تقويم لاستمرارية منسّج الذي يمثل التكرارات النسبية ضمن مجالات النتائج البيانية. rdf:langString
Αν η αθροιστική συνάρτηση κατανομής μίας τυχαίας μεταβλητής είναι , τότε η συνάρτηση πυκνότητας πιθανότητας ορίζεται ως η παράγωγος της αθροιστικής συνάρτησης κατανομής: Μία συνάρτηση πυκνότητας πιθανότητας έχει τις εξής ιδιότητες: 1. * σχεδόν παντού 2. * Αντιστρόφως αν μία συνάρτηση ικανοποιεί τις δύο παραπάνω σχέσεις, τότε ορίζει ένα μέτρο πιθανότητας σύμφωνα με rdf:langString
En la teoría de la probabilidad, la función de densidad de probabilidad, función de densidad, o simplemente densidad de una variable aleatoria continua describe la probabilidad relativa según la cual dicha variable aleatoria tomará determinado valor.La probabilidad de que la variable aleatoria caiga en una región específica del espacio de posibilidades estará dada por la integral de la densidad de esta variable entre uno y otro límite de dicha región.La función de densidad de probabilidad (FDP) es positiva a lo largo de todo su dominio y su integral sobre todo el espacio es de valor unitario. rdf:langString
확률론에서 확률 밀도 함수(確率密度函數, 영어: probability density function 약자 pdf)는 확률 변수의 분포를 나타내는 함수로, 확률 밀도 함수 와 구간 에 대해서 확률 변수 가 구간에 포함될 확률 는 가 된다. 확률 밀도 함수 는 다음의 두 조건을 만족해야 한다. 1. * 모든 실수값 에 대해 2. * 확률 밀도 함수와 누적 분포 함수에는 다음과 같은 수식이 성립한다. rdf:langString
In matematica, una funzione di densità di probabilità (o PDF dall'inglese probability density function) è l'analogo della funzione di probabilità di una variabile casuale ma con la condizione che la variabile casuale sia continua, cioè l'insieme dei possibili valori che ha la potenza del continuo. Essa descrive la "densità" di probabilità in ogni punto nello spazio campionario. rdf:langString
確率密度関数(かくりつみつどかんすう、(英: probability density function、PDF)とは、確率論において、連続型確率変数がある値をとるという事象の確率密度を記述する関数である。確率変数がある範囲の値をとる確率を、その範囲にわたって確率密度関数を積分することにより得ることができるよう定義される。確率密度関数の値域は非負の実数であり、定義域全体を積分すると1である。 例えば単変数の確率密度関数を平面上のグラフに表現して、x軸に確率変数の値を、y軸に確率密度を採った場合、求めたい範囲(x値)の下限値と上限値での垂直線と、変数グラフ曲線と y = 0 の直線とで囲まれる範囲の面積が確率になる。 「確率分布関数」 (probability distribution function) あるいは「確率関数」 (probability function) という用語は、具体的に何を指しているか現時点でも定義が曖昧であり、確率論研究者や統計学者の間では、その意味が標準的でないとされる場合がある。 他の資料に拠れば「確率密度関数」は値の集合に対する関数として定義されたり、累積分布関数との関係で言及されたり、確率質量関数の意味で使われたりする。さらには、密度関数 (density function) という用語が確率質量関数の意味で用いられている場合もある。 rdf:langString
Funkcja gęstości prawdopodobieństwa (gęstość zmiennej losowej) – nieujemna funkcja rzeczywista, określona dla rozkładu prawdopodobieństwa, taka że całka z tej funkcji, obliczona w odpowiednich granicach, jest równa prawdopodobieństwu wystąpienia danego zdarzenia losowego. Funkcję gęstości definiuje się dla rozkładów prawdopodobieństwa jednowymiarowych i wielowymiarowych. Rozkłady mające gęstość nazywane są rozkładami ciągłymi. rdf:langString
Пло́тность вероя́тности — один из способов задания распределения случайной величины. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) случайной величины» или «функция распределения вероятностей» фактически синонимизируются и под ними подразумевается вещественная функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных). rdf:langString
Inom sannolikhetsteori ger täthetsfunktionen en bild av hur sannolika olika resultat är i förhållande till varandra till skillnad från fördelningsfunktionen som ger sannolikheten att variabeln antar värden som "ligger till vänster" om en given punkt på talaxeln, dvs. inom intervallet . Ett annat vanligt namn på täthetsfunktionen är frekvensfunktion, men skall man vara precis gör man distinktionen frekvensfunktion eller sannolikhetsfunktion för diskreta stokastiska variabler och täthetsfunktion för kontinuerliga. rdf:langString
在数学中,连续型随机变量的概率密度函數(Probability density function,簡寫作PDF ),在不致於混淆时可简称为密度函数,是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数(CDF)或概率质量函数(PMF)混淆。 rdf:langString
A la teoria de la probabilitat, una funció de densitat de probabilitatés una funció que representa una distribució de probabilitat en termes d'integrals. Formalment, una distribució de probabilitat té densitat f si f és una funció no-negativa, Lebesgue-integrable tal que la probabilitat d'un interval [a, b] ve donada per: Intuïtivament, si una distribució de probabilitat té densitat f(x), aleshores l'interval infinitesimal [x, x + dx] té probabilitatf(x) dx. rdf:langString
Hustota pravděpodobnosti (hustota rozdělení pravděpodobnosti, anglicky Probability Density Function, PDF) v teorii pravděpodobnosti je funkce, jejíž integrací na kterémkoli vzorku (podmnožině prostoru elementárních jevů) vyjde relativní pravděpodobnost, že hodnota náhodné proměnné by se rovnala tomuto vzorku. Hodnota PDF ve dvou různých vzorcích spojité náhodné proměnné může být při libovolném náhodném pokusu použita k porovnání, o kolik pravděpodobnější je, že náhodná proměnná by se rovnala jednomu vzorku ve srovnání s druhým vzorkem. Přitom absolutní pravděpodobnost, že spojitá náhodná proměnná nabyde přesně jakékoli konkrétní hodnoty je 0, protože existuje nekonečná množina možných hodnot, které mohou nastat. (Pro spojitou náhodnou veličinu také obecně neplatí, že i její hustota pravděp rdf:langString
Eine Wahrscheinlichkeitsdichtefunktion, oft kurz Dichtefunktion, Wahrscheinlichkeitsdichte, Verteilungsdichte oder nur Dichte genannt und mit WDF oder englisch PDF (probability density function) abgekürzt, ist eine spezielle reellwertige Funktion in der Stochastik. Dort dienen die Wahrscheinlichkeitsdichtefunktionen zur Konstruktion von Wahrscheinlichkeitsverteilungen mithilfe von Integralen sowie zur Untersuchung und Klassifikation von Wahrscheinlichkeitsverteilungen. rdf:langString
En matematiko, probablodensa funkcio (pdf) servas por prezenti probablodistribuon esprimitajn pere de integraloj. Probablodensa funkcio estas ĉie nenegativa kaj ĝia integralo de −∞ al +∞ estas egala al 1. Se probablodistribuo havas denson f(x), tiam la infinitezima intervalo [x, x + dx] havas probablon f(x) dx. Formale, probablodistribuo havas denson f(x) se f(x) estas nenegativa funkcio R → R tia ke la probablo de intervalo [a, b] estas donita per rdf:langString
Probabilitate teorian, probabilitatearen dentsitate-funtzioa, probabilitate-dentsitatea edo besterik gabe dentsitate-funtzioa, labur pdf ere deitua, zorizko aldagai jarraitu baten balioen probabilitate-banaketa azaltzeko moduetako bat da, tarte bati daogkion probabilitatea dentsitate-funtzioaren integralaren bitartez, tarte horretan x ardatzaren eta funtzioaren artean dagoen azaleraren bitartez alegia, definitzen dena. Zehatzago, f(x) dentsitate-funtzioa izanik, rdf:langString
In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would be close to that sample. Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0 (since there is an infinite set of possible values to begin with), the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample co rdf:langString
Dalam teori probabilitas, Fungsi kepadatan probabilitas atau fkp (bahasa Inggris: probability density function) merupakan segolongan fungsi yang sering digunakan dalam teori statistika untuk menjelaskan perilaku suatu distribusi probabilitas teoretis. Suatu fungsi memenuhi kriteria sebagai fkp apabila nilainya selalu positif untuk setiap titik absis dan merupakan distribusi probabilitas. Ini berarti bahwa suatu fkp berharga non-negatif untuk semua nilai absis dan hasil integral tertentunya yang merentang dari −∞ menuju +∞ sama dengan satu.Selain disebut sebagai fungsi kepekatan probabilitas, pustaka-pustaka juga menyebutnya sebagai fungsi kepekatan peluang atau fungsi kerapatan probabilitas. rdf:langString
En théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle ou vectorielle pour laquelle la probabilité d’appartenance à un domaine se calcule à l’aide d’une intégrale sur ce domaine. La fonction à intégrer est alors appelée fonction de densité ou densité de probabilité, égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d’intégrale 1. rdf:langString
Een kansdichtheid of waarschijnlijkheidsdichtheid is een functie waarmee de kansverdeling van een continue stochastische variabele beschreven kan worden. Zo'n stochastische variabele neemt geen enkele individuele waarde aan met positieve kans. Hier geldt dus (op het eerste gezicht paradoxaal) voor alle : Omdat de verdelingsfunctie van een continue stochastische variabele absoluut continu is en dus (bijna overal) differentieerbaar, kan deze vastgeled worden door z'n afgeleide . Als deze overal gedefinieerd is, wordt de afgeleide de kansdichtheid van genoemd. rdf:langString
Em teoria das probabilidades e estatística, a função densidade de probabilidade (FDP), ou densidade de uma variável aleatória contínua, é uma função que descreve a verossimilhança de uma variável aleatória tomar um valor dado. A probabilidade da variável aleatória cair em uma faixa particular é dada pela integral da densidade dessa variável sobre tal faixa - isto é, é dada pela área abaixo da função densidade mas acima do eixo horizontal e entre o menor e o maior valor dessa faixa. A função densidade de probabilidade é não negativa sempre, e sua integral sobre todo o espaço é igual a um. A função densidade pode ser obtida a partir da função distribuição acumulada a partir da operação de derivação (quando esta é derivável). rdf:langString
Густина ймовірності або щільність неперервної випадкової величини — це функція, що визначає ймовірнісну міру відносної правдоподібності, того що значення випадкової величини буде відповідати заданій події, для кожної окремої події (або точки) у просторі подій (множини всіх можливих значень, які може приймати випадкова величина). Іншими словами, в той час, як абсолютна правдоподібність, що неперервна випадкова величина може прийняти одне конкретне значення дорівнює 0 (оскільки існує нескінченна множина можливих значень), значення функції щільності у двох окремих точках можна використати аби припустити, наскільки ймовірніше ця випадкова величина дорівнює одному значенню порівнюючи з іншим. rdf:langString
rdf:langString دالة الكثافة الاحتمالية
rdf:langString Funció de densitat de probabilitat
rdf:langString Hustota pravděpodobnosti
rdf:langString Wahrscheinlichkeitsdichtefunktion
rdf:langString Συνάρτηση πυκνότητας πιθανότητας
rdf:langString Probablodensa funkcio
rdf:langString Función de densidad de probabilidad
rdf:langString Probabilitatearen dentsitate-funtzio
rdf:langString Variable aléatoire à densité
rdf:langString Fungsi kepekatan probabilitas
rdf:langString Funzione di densità di probabilità
rdf:langString 確率密度関数
rdf:langString 확률 밀도 함수
rdf:langString Kansdichtheid
rdf:langString Funkcja gęstości prawdopodobieństwa
rdf:langString Probability density function
rdf:langString Função densidade
rdf:langString Плотность вероятности
rdf:langString Täthetsfunktion
rdf:langString 機率密度函數
rdf:langString Густина ймовірності
xsd:integer 43487
xsd:integer 1116692234
rdf:langString N.G.
rdf:langString D/d031110
rdf:langString Ushakov
rdf:langString Density of a probability distribution
rdf:langString في نظرية الاحتمالات، دالة الكثافة الاحتمالية (د.ك.ا) (بالإنجليزية: probability density function)‏ أو (pdf) هي الدالة الممثلة لأي توزيع احتمالي عن طريق التكامل. وتكون دالة الكثافة الاحتمالية موجبة دائمًا، كما يكون تكاملها من ∞- إلى ∞+ مساويًا لواحد: يمكن وصف دالة الكثافة الاحتمالية بأنها تقويم لاستمرارية منسّج الذي يمثل التكرارات النسبية ضمن مجالات النتائج البيانية.
rdf:langString Hustota pravděpodobnosti (hustota rozdělení pravděpodobnosti, anglicky Probability Density Function, PDF) v teorii pravděpodobnosti je funkce, jejíž integrací na kterémkoli vzorku (podmnožině prostoru elementárních jevů) vyjde relativní pravděpodobnost, že hodnota náhodné proměnné by se rovnala tomuto vzorku. Hodnota PDF ve dvou různých vzorcích spojité náhodné proměnné může být při libovolném náhodném pokusu použita k porovnání, o kolik pravděpodobnější je, že náhodná proměnná by se rovnala jednomu vzorku ve srovnání s druhým vzorkem. Přitom absolutní pravděpodobnost, že spojitá náhodná proměnná nabyde přesně jakékoli konkrétní hodnoty je 0, protože existuje nekonečná množina možných hodnot, které mohou nastat. (Pro spojitou náhodnou veličinu také obecně neplatí, že i její hustota pravděpodobnosti je spojitá.) PDF se používá ke stanovení pravděpodobnosti , že náhodná proměnná spadá do určitého intervalu hodnot namísto libovolné jediné hodnoty. Tato pravděpodobnost je určena integrálem PDF této proměnné nad uvedeným rozsahem, který si lze představit jako plochu ohraničenou funkcí hustoty a vodorovnou osou, a mezi nejnižší a nejvyšší hodnotou daného intervalu. Funkce hustoty pravděpodobnosti je všude nezáporná a její integrál v celém prostoru je roven 1. Termín funkce rozdělení pravděpodobnosti se může vztahovat i na kumulativní distribuční funkci, nebo se může jednat spíše o funkci pravděpodobnosti (PMF) než hustotu. Samostatný termín funkce hustoty se také používá pro funkci pravděpodobnosti, což vede k dalšímu zmatku.Obecně se v kontextu diskrétních náhodných proměnných (náhodných proměnných, které berou hodnoty na spočetné množině) používá termínu funkce pravděpodobnosti (PMF), zatímco hustota pravděpodobnosti (PDF) se používá v souvislosti se spojitými náhodnými proměnnými.
rdf:langString A la teoria de la probabilitat, una funció de densitat de probabilitatés una funció que representa una distribució de probabilitat en termes d'integrals. Formalment, una distribució de probabilitat té densitat f si f és una funció no-negativa, Lebesgue-integrable tal que la probabilitat d'un interval [a, b] ve donada per: per dos nombres a i b qualssevol. Això implica que el valor de la integral, quan i , ha d'ésser 1.Recíprocament, qualsevol funció no-negativa Lebesgue-integrable amb integral total igual a 1 és una funció de densitat d'una distribució de probabilitat.La funció de densitat de probabilitat és un cas particular de la . Intuïtivament, si una distribució de probabilitat té densitat f(x), aleshores l'interval infinitesimal [x, x + dx] té probabilitatf(x) dx.
rdf:langString Αν η αθροιστική συνάρτηση κατανομής μίας τυχαίας μεταβλητής είναι , τότε η συνάρτηση πυκνότητας πιθανότητας ορίζεται ως η παράγωγος της αθροιστικής συνάρτησης κατανομής: Μία συνάρτηση πυκνότητας πιθανότητας έχει τις εξής ιδιότητες: 1. * σχεδόν παντού 2. * Αντιστρόφως αν μία συνάρτηση ικανοποιεί τις δύο παραπάνω σχέσεις, τότε ορίζει ένα μέτρο πιθανότητας σύμφωνα με
rdf:langString En matematiko, probablodensa funkcio (pdf) servas por prezenti probablodistribuon esprimitajn pere de integraloj. Probablodensa funkcio estas ĉie nenegativa kaj ĝia integralo de −∞ al +∞ estas egala al 1. Se probablodistribuo havas denson f(x), tiam la infinitezima intervalo [x, x + dx] havas probablon f(x) dx. Formale, probablodistribuo havas denson f(x) se f(x) estas nenegativa funkcio R → R tia ke la probablo de intervalo [a, b] estas donita per por ĉiuj du nombroj a kaj b. La tuteca integralo de f devas esti 1. Male, por ĉiu nenegativa Lebego-integralebla funkcio kun tuteca integralo 1 ekzistas hazarda variablo, kies denso ĝi estas.
rdf:langString Eine Wahrscheinlichkeitsdichtefunktion, oft kurz Dichtefunktion, Wahrscheinlichkeitsdichte, Verteilungsdichte oder nur Dichte genannt und mit WDF oder englisch PDF (probability density function) abgekürzt, ist eine spezielle reellwertige Funktion in der Stochastik. Dort dienen die Wahrscheinlichkeitsdichtefunktionen zur Konstruktion von Wahrscheinlichkeitsverteilungen mithilfe von Integralen sowie zur Untersuchung und Klassifikation von Wahrscheinlichkeitsverteilungen. Im Gegensatz zu Wahrscheinlichkeiten können Wahrscheinlichkeitsdichtefunktionen auch Werte über eins annehmen. Die Konstruktion von Wahrscheinlichkeitsverteilungen über Wahrscheinlichkeitsdichtefunktionen beruht auf der Idee, dass die Fläche zwischen der Wahrscheinlichkeitsdichtefunktion und der x-Achse von einem Punkt bis zu einem Punkt der Wahrscheinlichkeit entspricht, einen Wert zwischen und zu erhalten. Nicht der Funktionswert der Wahrscheinlichkeitsdichtefunktion ist somit relevant, sondern die Fläche unter ihrem Funktionsgraph, also das Integral. In einem allgemeineren Kontext handelt es sich bei Wahrscheinlichkeitsdichtefunktionen um Dichtefunktionen (im Sinne der Maßtheorie) bezüglich des Lebesgue-Maßes. Während im diskreten Fall Wahrscheinlichkeiten von Ereignissen durch Aufsummieren der Wahrscheinlichkeiten der einzelnen Elementarereignisse berechnet werden können (ein idealer Würfel zeigt beispielsweise jede Zahl mit einer Wahrscheinlichkeit von ), gilt dies nicht mehr für den stetigen Fall. Beispielsweise sind zwei Menschen kaum exakt gleich groß, sondern nur bis auf Haaresbreite oder weniger. In solchen Fällen sind Wahrscheinlichkeitsdichtefunktionen nützlich. Mit Hilfe dieser Funktionen lässt sich die Wahrscheinlichkeit für ein beliebiges Intervall – beispielsweise eine Körpergröße zwischen 1,80 m und 1,81 m – bestimmen, obwohl unendlich viele Werte in diesem Intervall liegen, von denen jeder einzelne die Wahrscheinlichkeit hat.
rdf:langString En la teoría de la probabilidad, la función de densidad de probabilidad, función de densidad, o simplemente densidad de una variable aleatoria continua describe la probabilidad relativa según la cual dicha variable aleatoria tomará determinado valor.La probabilidad de que la variable aleatoria caiga en una región específica del espacio de posibilidades estará dada por la integral de la densidad de esta variable entre uno y otro límite de dicha región.La función de densidad de probabilidad (FDP) es positiva a lo largo de todo su dominio y su integral sobre todo el espacio es de valor unitario.
rdf:langString Probabilitate teorian, probabilitatearen dentsitate-funtzioa, probabilitate-dentsitatea edo besterik gabe dentsitate-funtzioa, labur pdf ere deitua, zorizko aldagai jarraitu baten balioen probabilitate-banaketa azaltzeko moduetako bat da, tarte bati daogkion probabilitatea dentsitate-funtzioaren integralaren bitartez, tarte horretan x ardatzaren eta funtzioaren artean dagoen azaleraren bitartez alegia, definitzen dena. Zehatzago, f(x) dentsitate-funtzioa izanik, Dentsitate-funtzioak puntu bakoitzean hartzen duen balioak puntuaren inguru horretan beste inguruetan baino probabilitate handiagoa edo txikiagoa biltzen den adierazten du soilik, zorizko aldagai diskretuen banaketa definitzen duten probabilitate-funtzioek ez bezala, non funtzioaren balioak puntuaren probabilitatea adierazten duen.
rdf:langString In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would be close to that sample. Probability density is the probability per unit length, in other words, while the absolute likelihood for a continuous random variable to take on any particular value is 0 (since there is an infinite set of possible values to begin with), the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample. In a more precise sense, the PDF is used to specify the probability of the random variable falling within a particular range of values, as opposed to taking on any one value. This probability is given by the integral of this variable's PDF over that range—that is, it is given by the area under the density function but above the horizontal axis and between the lowest and greatest values of the range. The probability density function is nonnegative everywhere, and the area under the entire curve is equal to 1. The terms "probability distribution function" and "probability function" have also sometimes been used to denote the probability density function. However, this use is not standard among probabilists and statisticians. In other sources, "probability distribution function" may be used when the probability distribution is defined as a function over general sets of values or it may refer to the cumulative distribution function, or it may be a probability mass function (PMF) rather than the density. "Density function" itself is also used for the probability mass function, leading to further confusion. In general though, the PMF is used in the context of discrete random variables (random variables that take values on a countable set), while the PDF is used in the context of continuous random variables.
rdf:langString Dalam teori probabilitas, Fungsi kepadatan probabilitas atau fkp (bahasa Inggris: probability density function) merupakan segolongan fungsi yang sering digunakan dalam teori statistika untuk menjelaskan perilaku suatu distribusi probabilitas teoretis. Suatu fungsi memenuhi kriteria sebagai fkp apabila nilainya selalu positif untuk setiap titik absis dan merupakan distribusi probabilitas. Ini berarti bahwa suatu fkp berharga non-negatif untuk semua nilai absis dan hasil integral tertentunya yang merentang dari −∞ menuju +∞ sama dengan satu.Selain disebut sebagai fungsi kepekatan probabilitas, pustaka-pustaka juga menyebutnya sebagai fungsi kepekatan peluang atau fungsi kerapatan probabilitas. Secara formal, sebuah distribusi probabilitas memiliki kerapatan f(x) jika f(x) adalah sebuah fungsi integrasi Lebesgue tak-negatif yang memetakan R → R, sehingga probabilitas dalam interval [a, b] diberikan oleh untuk setiap a dan b. Implikasinya adalah bahwa integral total dari f harus bernilai satu. Sebaliknya, setiap fungsi Lebesgue-terintegrasi tak-negatif dengan integral total bernilai satu adalah kerapatan probabilitas dari distribusi probabilitas yang telah didefinisikan, yang bersesuaian.
rdf:langString En théorie des probabilités, une variable aléatoire à densité est une variable aléatoire réelle ou vectorielle pour laquelle la probabilité d’appartenance à un domaine se calcule à l’aide d’une intégrale sur ce domaine. La fonction à intégrer est alors appelée fonction de densité ou densité de probabilité, égale (dans le cas réel) à la dérivée de la fonction de répartition. Les densités de probabilité sont les fonctions essentiellement positives et intégrables d’intégrale 1. Informellement, une densité de probabilité peut être vue comme la limite d'un histogramme : si on dispose d'un échantillon suffisamment important de valeurs d'une variable aléatoire à densité, représenté par un histogramme des fréquences relatives des différentes classes de valeurs, alors cet histogramme va ressembler à la densité de probabilité de la variable aléatoire, pourvu que les classes de valeurs soient suffisamment étroites.
rdf:langString 확률론에서 확률 밀도 함수(確率密度函數, 영어: probability density function 약자 pdf)는 확률 변수의 분포를 나타내는 함수로, 확률 밀도 함수 와 구간 에 대해서 확률 변수 가 구간에 포함될 확률 는 가 된다. 확률 밀도 함수 는 다음의 두 조건을 만족해야 한다. 1. * 모든 실수값 에 대해 2. * 확률 밀도 함수와 누적 분포 함수에는 다음과 같은 수식이 성립한다.
rdf:langString In matematica, una funzione di densità di probabilità (o PDF dall'inglese probability density function) è l'analogo della funzione di probabilità di una variabile casuale ma con la condizione che la variabile casuale sia continua, cioè l'insieme dei possibili valori che ha la potenza del continuo. Essa descrive la "densità" di probabilità in ogni punto nello spazio campionario.
rdf:langString 確率密度関数(かくりつみつどかんすう、(英: probability density function、PDF)とは、確率論において、連続型確率変数がある値をとるという事象の確率密度を記述する関数である。確率変数がある範囲の値をとる確率を、その範囲にわたって確率密度関数を積分することにより得ることができるよう定義される。確率密度関数の値域は非負の実数であり、定義域全体を積分すると1である。 例えば単変数の確率密度関数を平面上のグラフに表現して、x軸に確率変数の値を、y軸に確率密度を採った場合、求めたい範囲(x値)の下限値と上限値での垂直線と、変数グラフ曲線と y = 0 の直線とで囲まれる範囲の面積が確率になる。 「確率分布関数」 (probability distribution function) あるいは「確率関数」 (probability function) という用語は、具体的に何を指しているか現時点でも定義が曖昧であり、確率論研究者や統計学者の間では、その意味が標準的でないとされる場合がある。 他の資料に拠れば「確率密度関数」は値の集合に対する関数として定義されたり、累積分布関数との関係で言及されたり、確率質量関数の意味で使われたりする。さらには、密度関数 (density function) という用語が確率質量関数の意味で用いられている場合もある。
rdf:langString Een kansdichtheid of waarschijnlijkheidsdichtheid is een functie waarmee de kansverdeling van een continue stochastische variabele beschreven kan worden. Zo'n stochastische variabele neemt geen enkele individuele waarde aan met positieve kans. Hier geldt dus (op het eerste gezicht paradoxaal) voor alle : Omdat de verdelingsfunctie van een continue stochastische variabele absoluut continu is en dus (bijna overal) differentieerbaar, kan deze vastgeled worden door z'n afgeleide . Als deze overal gedefinieerd is, wordt de afgeleide de kansdichtheid van genoemd. De kansdichtheid geeft voor een continue stochastische variabele een goed beeld hoe de totale 'kansmassa' (in totaal 1) verdeeld is over het waardenbereik van de stochastische variabele. Met behulp van de kansdichtheid worden kansen bepaald door:
rdf:langString Funkcja gęstości prawdopodobieństwa (gęstość zmiennej losowej) – nieujemna funkcja rzeczywista, określona dla rozkładu prawdopodobieństwa, taka że całka z tej funkcji, obliczona w odpowiednich granicach, jest równa prawdopodobieństwu wystąpienia danego zdarzenia losowego. Funkcję gęstości definiuje się dla rozkładów prawdopodobieństwa jednowymiarowych i wielowymiarowych. Rozkłady mające gęstość nazywane są rozkładami ciągłymi.
rdf:langString Em teoria das probabilidades e estatística, a função densidade de probabilidade (FDP), ou densidade de uma variável aleatória contínua, é uma função que descreve a verossimilhança de uma variável aleatória tomar um valor dado. A probabilidade da variável aleatória cair em uma faixa particular é dada pela integral da densidade dessa variável sobre tal faixa - isto é, é dada pela área abaixo da função densidade mas acima do eixo horizontal e entre o menor e o maior valor dessa faixa. A função densidade de probabilidade é não negativa sempre, e sua integral sobre todo o espaço é igual a um. A função densidade pode ser obtida a partir da função distribuição acumulada a partir da operação de derivação (quando esta é derivável). Se uma variável aleatória tem densidade dada por f(x), então o intervalo infinitesimal [x, x+dx] tem probabilidade f(x) dx. Formalmente, a função densidade de probabilidade (ou fdp), denotada por , de uma variável aleatória contínua X é a função que satisfaz Os termos função distribuição de probabilidade e função de probabilidade por vezes têm sido utilizados para denotar a função de densidade de probabilidade. No entanto, esse uso não é padrão entre estatísticos. Em outras fontes, função de distribuição de probabilidade pode ser utilizado quando a distribuição de probabilidade é definida como uma função sobre conjuntos de valores, ou pode referir-se a função distribuição acumulada, ou ainda pode ser uma função massa de probabilidade (FMP), em vez de densidade. Existem outras confusões da terminologia porque função densidade também tem sido usado para o que é aqui chamado de função massa de probabilidade (FMP). Em geral, porém, a FMP é usada no contexto de variáveis aleatórias discretas (variáveis aleatórias que tenham valores de um conjunto discreto), enquanto FDP é usado no contexto de variáveis aleatórias contínuas.
rdf:langString Пло́тность вероя́тности — один из способов задания распределения случайной величины. Во многих практических приложениях понятия «плотность вероятности» и «плотность (распределения) случайной величины» или «функция распределения вероятностей» фактически синонимизируются и под ними подразумевается вещественная функция, характеризующая сравнительную вероятность реализации тех или иных значений случайной переменной (переменных).
rdf:langString Inom sannolikhetsteori ger täthetsfunktionen en bild av hur sannolika olika resultat är i förhållande till varandra till skillnad från fördelningsfunktionen som ger sannolikheten att variabeln antar värden som "ligger till vänster" om en given punkt på talaxeln, dvs. inom intervallet . Ett annat vanligt namn på täthetsfunktionen är frekvensfunktion, men skall man vara precis gör man distinktionen frekvensfunktion eller sannolikhetsfunktion för diskreta stokastiska variabler och täthetsfunktion för kontinuerliga.
rdf:langString 在数学中,连续型随机变量的概率密度函數(Probability density function,簡寫作PDF ),在不致於混淆时可简称为密度函数,是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。圖中,橫軸為隨機變量的取值,縱軸為概率密度函數的值,而随机变量的取值落在某个区域内的概率為概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累積分佈函數是概率密度函数的积分。 概率密度函数有时也被称为概率分布函数,但这种称法可能会和累积分布函数(CDF)或概率质量函数(PMF)混淆。
rdf:langString Густина ймовірності або щільність неперервної випадкової величини — це функція, що визначає ймовірнісну міру відносної правдоподібності, того що значення випадкової величини буде відповідати заданій події, для кожної окремої події (або точки) у просторі подій (множини всіх можливих значень, які може приймати випадкова величина). Іншими словами, в той час, як абсолютна правдоподібність, що неперервна випадкова величина може прийняти одне конкретне значення дорівнює 0 (оскільки існує нескінченна множина можливих значень), значення функції щільності у двох окремих точках можна використати аби припустити, наскільки ймовірніше ця випадкова величина дорівнює одному значенню порівнюючи з іншим. У більш точному розумінні, функція густини ймовірності використовується для визначення ймовірність того, що випадкова величина потрапить у заданий діапазон значень, замість того щоб визначати чи прийме вона одне конкретне значення. Ця ймовірність задається за допомогою інтеграла функції густини цієї величини по тому діапазону — тобто вона задає площу що обмежена функцією густини й горизонтальною віссю координат і обмеженою заданим діапазоном. Функція густини імовірностей є невід'ємною на всій області визначення, а її інтеграл по всьому простору подій дорівнює одиниці. У випадку, коли ймовірнісна міра є розподілом випадкової величини, говорять про щільність випадкової величини.
xsd:nonNegativeInteger 30405

data from the linked data cloud