Photodisintegration

http://dbpedia.org/resource/Photodisintegration an entity of type: Election

الانحلال الضوئي أو الانحلال بالضوء أو التلاشي الضوئي هو تفاعل نووي تمتص فيه نواة الذرة أشعة غاما مرتفعة الطاقة، ينتج عنها انتقال الذرة إلى الحالة المثارة، حيث تضمحل بعدها تلقائياً بإصدار جسيمات دون ذرية. تعمل أشعة غاما الواردة على نزع واحد أو أكثر من النيوترونات أو البروتونات أو جسيم ألفا من النواة. تعد عملية الانحلال الضوئي عملية ماصة للحرارة (أو الطاقة) بالنسبة للنوى الذرية الأخف من الحديد، وأحياناً ناشرة للحرارة للنوى الذرية الأثقل من الحديد. يعد الانحلال الضوئي مسؤولاً عن التخليق النووي لبعض العناصر الغنية بالبروتونات (العناصر الثقيلة) عبر عملية البروتون في المستعرات العظمى. rdf:langString
La photodésintégration est une réaction nucléaire induite par un rayon gamma de haute énergie. Le rayon gamma interagit avec le noyau de l'atome ce qui lui fournit une certaine . Le noyau atomique peut alors se désexciter de différentes manières : émission de rayons gamma, émission de particules, fission, ... La photodésintégration est endothermique (absorbe de la chaleur) dans les noyaux atomiques plus légers que le fer, et exothermique (émet de la chaleur) dans les noyaux plus lourds. La photodésintégraton est en partie responsable de la naissance de noyaux lourds et riches en protons produits par le processus p qui a lieu dans les supernovas. rdf:langString
光崩壊 (英: Photodisintegration) とは、非常に高いエネルギーのガンマ線が原子核に作用することによって、原子が崩壊する過程のこと。光壊変や光分解ともよばれる。原子核から陽子が叩き出されることによって起こる。 光崩壊は、本質的には核融合とは逆の過程である。対象となる原子核が鉄より軽い時は吸熱性であり、原子核が鉄以上に重い時には放熱を行う。光崩壊は、超新星元素合成(p過程)において重要な役割を果たす。 rdf:langString
광붕괴(photodisintegration)란 핵이 고에너지 감마선을 흡수해 들뜬 핵이 되고, 양성자나 중성자 같은 것을 방출하는 것이다. 쌍불안정형 초신성에서 일어난다. rdf:langString
光致蛻變是極端高能量的γ射線和原子核的交互作用,並且使原子核進入受激態,立刻衰變成為兩或更多個子核的物理過程。一個簡單的例子是,接踵而來的有效的γ射線从原子核中敲出一颗质子或中子,而極端的例子則是γ射線導致自發性的核分裂反應。這種過程根本上是與核融合相反的,原本是轻的元素在高溫下結合在一起形成重元素並釋放出能量。光致蛻變是從比鐵輕的元素吸熱(能量吸收)而從比鐵重的元素放熱放出能量。光致蛻變至少在超新星中對一些重元素和富含質子的元素經由p-過程的核合成有所貢獻。 rdf:langString
Kernphotoeffekt (Bezeichnung in der Strahlenphysik) oder Photodesintegration (Bezeichnung in der Astrophysik) sind durch Stoß eines Photons ausgelöste Kernreaktionen, bei denen aus dem Targetkern ein oder einige wenige Bestandteile „herausgeschlagen“ werden, z. B. ein oder zwei Neutronen, ein Proton oder auch ein Alphateilchen (d. h. ein Helium-4-Atomkern). Die Bezeichnung wurde wegen der begrifflichen Ähnlichkeit mit der Photoionisation in der Atomhülle gewählt; letztere wird in der Fachsprache der Kernphysik meistens einfach „Photoeffekt“ genannt. rdf:langString
La fotodesintegración (también llamada fototransmutación) es un proceso físico en el cual un fotón gamma de muy alta energía es absorbido por un núcleo atómico causando que este entre en un estado excitado, que inmediatamente decae emitiendo una partícula subatómica. Un solo protón, neutrón o partícula alfa​ es efectivamente expulsada del núcleo por el rayo gamma incidente. Este proceso es el inverso al de fusión nuclear, donde elementos ligeros a muy altas temperaturas se combinan para formar elementos más pesados liberando energía en el proceso. La fotodesintegración es endotérmica (que necesita energía) para núcleos atómicos más ligeros que el hierro y exótermica (que libera energía) para núcleos atómicos más pesados que el hierro. La fotodesintegración es responsable de la nucleosíntes rdf:langString
Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. The incoming gamma ray effectively knocks one or more neutrons, protons, or an alpha particle out of the nucleus. The reactions are called (γ,n), (γ,p), and (γ,α). rdf:langString
La fotodisintegrazione è un processo fisico nel quale fotoni gamma estremamente energetici interagiscono con nuclei atomici causando la loro transizione ad uno stato eccitato ed un loro immediato decadimento in due nuclei minori. Un semplice esempio si manifesta quando un singolo protone o neutrone viene effettivamente spinto fuori dal nucleo da una radiazione gamma, mentre un esempio più estremo è rappresentato dalla spontanea reazione di fissione nucleare causata dalla radiazione gamma. rdf:langString
Fotodezintegracja, fototransmutacja – proces fizyczny, w którym bardzo wysokoenergetyczny foton promieniowania gamma oddziałuje z jądrem atomowym skutkując jego przejściem na wyższy poziom energetyczny, co prowadzi do reakcji jądrowych. rdf:langString
Фотоядерные реакции (англ. photodisintegration, phototransmutation) — ядерные реакции, происходящие при поглощении гамма-квантов ядрами атомов. Явление испускания ядрами нуклонов при этой реакции называется ядерным фотоэффектом. Это явление было открыто Чедвиком и Гольдхабером в 1934 году и в дальнейшем исследовано Боте и , а затем и Нильсом Бором. * — частица гамма-излучения или гамма-квант (фотон с высокой энергией); * — нейтрон; * — протон. В теории фотоядерных реакций используются статистическая модель составного ядра и модель резонансного прямого фотоэффекта. rdf:langString
Fotodesintegração é um processo no qual raios gama de energia extremamente alta interagem com um núcleo atômico e causam uma extrema excitação deste, o qual imediatamente decai em dois ou mais núcleos filhos. Um simples exemplo é quando um único próton ou nêutron é efetivamente expulso do núcleo por um raio gama incidente sobre este, e um exemplo extremo é quando o raio gama induz uma reação espontânea de fissão nuclear. Este processo é essencialmente o reverso da fusão nuclear, aonde elementos mais leves em altas temperaturas combinam-se juntos formando elementos mais pesados e liberando energia. A foto desintegração é endotérmica (absorvendo energia) para núcleos atômicos mais leves que o ferro e exotérmica (liberação de energia) para núcleo mais pesados que o ferro. rdf:langString
Фотоядерні реакції (англ. photodisintegration, phototransmutation) — ядерні реакції, що відбуваються при поглинанні гамма-квантів ядрами атомів. Явище випромінювання ядрами нуклонів при ції реакції називається ядерним фотоефектом. Це явище відкрили 1934 року Чедвік і Гольдхабер і далі досліджували Боте і , а потім і Нільс Бор. * — частинка гамма-випромінювання чи гамма-квант (фотон з високою енергією); * — нейтрон; * — протон. В теорії фотоядерних реакцій використовується статистична модель складеного ядра і модель резонансного прямого фотоефекту. rdf:langString
rdf:langString انحلال ضوئي
rdf:langString Kernphotoeffekt
rdf:langString Fotodesintegración
rdf:langString Fotodisintegrazione
rdf:langString Photodésintégration
rdf:langString 광붕괴
rdf:langString 光崩壊
rdf:langString Photodisintegration
rdf:langString Fotodezintegracja
rdf:langString Fotodesintegração
rdf:langString Фотоядерные реакции
rdf:langString 光致蛻變
rdf:langString Фотоядерна реакція
xsd:integer 11145154
xsd:integer 1079216251
rdf:langString الانحلال الضوئي أو الانحلال بالضوء أو التلاشي الضوئي هو تفاعل نووي تمتص فيه نواة الذرة أشعة غاما مرتفعة الطاقة، ينتج عنها انتقال الذرة إلى الحالة المثارة، حيث تضمحل بعدها تلقائياً بإصدار جسيمات دون ذرية. تعمل أشعة غاما الواردة على نزع واحد أو أكثر من النيوترونات أو البروتونات أو جسيم ألفا من النواة. تعد عملية الانحلال الضوئي عملية ماصة للحرارة (أو الطاقة) بالنسبة للنوى الذرية الأخف من الحديد، وأحياناً ناشرة للحرارة للنوى الذرية الأثقل من الحديد. يعد الانحلال الضوئي مسؤولاً عن التخليق النووي لبعض العناصر الغنية بالبروتونات (العناصر الثقيلة) عبر عملية البروتون في المستعرات العظمى.
rdf:langString Kernphotoeffekt (Bezeichnung in der Strahlenphysik) oder Photodesintegration (Bezeichnung in der Astrophysik) sind durch Stoß eines Photons ausgelöste Kernreaktionen, bei denen aus dem Targetkern ein oder einige wenige Bestandteile „herausgeschlagen“ werden, z. B. ein oder zwei Neutronen, ein Proton oder auch ein Alphateilchen (d. h. ein Helium-4-Atomkern). Die Bezeichnung wurde wegen der begrifflichen Ähnlichkeit mit der Photoionisation in der Atomhülle gewählt; letztere wird in der Fachsprache der Kernphysik meistens einfach „Photoeffekt“ genannt. In der für Kernreaktionen üblichen kurzen Schreibweise handelt sich also um -, -, - oder -Reaktionen. Die Energie des Photons muss mindestens der Bindungsenergie des am schwächsten gebundenen Nukleons im Kern entsprechen, damit der Effekt stattfindet. Zum Beispiel ist die notwendige Energie für eine -Reaktion mit Deuterium 2,225 MeV. Die Gammastrahlung, welcher der Zerfall einiger Radionuklide erzeugt reicht aus, diesen Schwellenwert – oder den noch niedrigeren in 9Be – zu überschreiten, was man sich in Gamma-Neutronenquellen zunutze macht.
rdf:langString La fotodesintegración (también llamada fototransmutación) es un proceso físico en el cual un fotón gamma de muy alta energía es absorbido por un núcleo atómico causando que este entre en un estado excitado, que inmediatamente decae emitiendo una partícula subatómica. Un solo protón, neutrón o partícula alfa​ es efectivamente expulsada del núcleo por el rayo gamma incidente. Este proceso es el inverso al de fusión nuclear, donde elementos ligeros a muy altas temperaturas se combinan para formar elementos más pesados liberando energía en el proceso. La fotodesintegración es endotérmica (que necesita energía) para núcleos atómicos más ligeros que el hierro y exótermica (que libera energía) para núcleos atómicos más pesados que el hierro. La fotodesintegración es responsable de la nucleosíntesis de, al menos, algunos elementos pesados ricos en protones vía proceso p que tiene lugar en las supernovas.
rdf:langString Photodisintegration (also called phototransmutation, or a photonuclear reaction) is a nuclear process in which an atomic nucleus absorbs a high-energy gamma ray, enters an excited state, and immediately decays by emitting a subatomic particle. The incoming gamma ray effectively knocks one or more neutrons, protons, or an alpha particle out of the nucleus. The reactions are called (γ,n), (γ,p), and (γ,α). Photodisintegration is endothermic (energy absorbing) for atomic nuclei lighter than iron and sometimes exothermic (energy releasing) for atomic nuclei heavier than iron. Photodisintegration is responsible for the nucleosynthesis of at least some heavy, proton-rich elements via the p-process in supernovae.This causes the iron to further fuse into the heavier elements.
rdf:langString La fotodisintegrazione è un processo fisico nel quale fotoni gamma estremamente energetici interagiscono con nuclei atomici causando la loro transizione ad uno stato eccitato ed un loro immediato decadimento in due nuclei minori. Un semplice esempio si manifesta quando un singolo protone o neutrone viene effettivamente spinto fuori dal nucleo da una radiazione gamma, mentre un esempio più estremo è rappresentato dalla spontanea reazione di fissione nucleare causata dalla radiazione gamma. Questo processo è essenzialmente l'inverso della fusione nucleare, dove elementi più leggeri ad alte temperature si combinano tra loro formando elementi più pesanti e rilasciando energia nell'ambiente (reazione esoergonica). La fotodisintegrazione è endoergonica (assorbe energia) per nuclei atomici più leggeri del ferro e esoergonica (rilascia energia) per nuclei atomici più pesanti del ferro. Il processo di fotodisintegrazione è inoltre responsabile della nucleosintesi di almeno alcuni elementi pesanti e ricchi di protoni tramite il processo p che avviene nelle supernovae.
rdf:langString La photodésintégration est une réaction nucléaire induite par un rayon gamma de haute énergie. Le rayon gamma interagit avec le noyau de l'atome ce qui lui fournit une certaine . Le noyau atomique peut alors se désexciter de différentes manières : émission de rayons gamma, émission de particules, fission, ... La photodésintégration est endothermique (absorbe de la chaleur) dans les noyaux atomiques plus légers que le fer, et exothermique (émet de la chaleur) dans les noyaux plus lourds. La photodésintégraton est en partie responsable de la naissance de noyaux lourds et riches en protons produits par le processus p qui a lieu dans les supernovas.
rdf:langString 光崩壊 (英: Photodisintegration) とは、非常に高いエネルギーのガンマ線が原子核に作用することによって、原子が崩壊する過程のこと。光壊変や光分解ともよばれる。原子核から陽子が叩き出されることによって起こる。 光崩壊は、本質的には核融合とは逆の過程である。対象となる原子核が鉄より軽い時は吸熱性であり、原子核が鉄以上に重い時には放熱を行う。光崩壊は、超新星元素合成(p過程)において重要な役割を果たす。
rdf:langString 광붕괴(photodisintegration)란 핵이 고에너지 감마선을 흡수해 들뜬 핵이 되고, 양성자나 중성자 같은 것을 방출하는 것이다. 쌍불안정형 초신성에서 일어난다.
rdf:langString Fotodezintegracja, fototransmutacja – proces fizyczny, w którym bardzo wysokoenergetyczny foton promieniowania gamma oddziałuje z jądrem atomowym skutkując jego przejściem na wyższy poziom energetyczny, co prowadzi do reakcji jądrowych. Pojedynczy proton lub neutron jest wyrzucany z jądra przez pochłonięty kwant gamma. Proces ten jest zasadniczo odwrotny do syntezy jądrowej, podczas której jądra lekkich pierwiastków łączą się tworząc cięższe jądra i uwalniając energię. Fotodezintegracja jest procesem endotermicznym (energia jest podczas niego absorbowana) dla jąder atomów pierwiastków lżejszych od żelaza oraz egzotermicznym (uwalniającym energię) dla jąder pierwiastków cięższych od żelaza. Zjawisko fotodezintegracji jest odpowiedzialne za nukleosyntezę przynajmniej kilku ciężkich, bogatych w protony pierwiastków poprzez proces p, który ma miejsce w supernowych.
rdf:langString Фотоядерные реакции (англ. photodisintegration, phototransmutation) — ядерные реакции, происходящие при поглощении гамма-квантов ядрами атомов. Явление испускания ядрами нуклонов при этой реакции называется ядерным фотоэффектом. Это явление было открыто Чедвиком и Гольдхабером в 1934 году и в дальнейшем исследовано Боте и , а затем и Нильсом Бором. При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром. Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном нейтронов. Такой распад ведёт к ядерным реакциям и , которые и называются фотоядерными, а явление испускания нуклонов в этих реакциях — ядерным фотоэффектом. Обозначения: * — частица гамма-излучения или гамма-квант (фотон с высокой энергией); * — нейтрон; * — протон. В теории фотоядерных реакций используются статистическая модель составного ядра и модель резонансного прямого фотоэффекта. Фотоядерные реакции идут с образованием составного ядра, однако при возбуждении реакций на ядрах с массовым числом экспериментально был обнаружен слишком большой выход по сравнению с выходом, предсказываемым этим механизмом. Кроме того, угловое распределение протонов с наибольшей энергией оказалось неизотропным. Эти факты указывают на дополнительный механизм прямого взаимодействия, который существенен только в случае -реакции на тяжёлых и средних ядрах. Реакция же всегда идёт с образованием составного ядра. Первой наблюдавшейся фотоядерной реакцией было фоторасщепление дейтрона: Она идёт без образования составного ядра, так как ядро дейтерия не имеет возбуждённых состояний, и может быть вызвана гамма-квантами сравнительно невысокой энергии (выше 2,23 МэВ). Однако нуклидов с малой энергией связи нуклонов всего несколько, а чтобы возбудить фотоядерные реакции с другими ядрами, необходимы фотоны с энергией не менее 8 МэВ. Фотоны с такой энергией возникают в некоторых ядерных реакциях или получаются при торможении в веществе очень быстрых электронов. При радиоактивном распаде, как правило, таких гамма-квантов не образуется, поэтому гамма-кванты β-распада не могут возбудить фотоядерные реакции и вызвать появление новой наведённой радиоактивности в других веществах. Если замедлителем в ядерном реакторе служит бериллий или тяжёлая вода, то вследствие необычно малой энергии связи нейтрона в 9Be и 2H под действием гамма-квантов радиоактивного распада на ядрах этих нуклидов эффективно протекают фотоядерные реакции . Особенно много гамма-квантов при этом дают радиоактивные продукты деления урана, но гамма-кванты в ядерном реакторе испускают и другие вещества, активированные нейтронами. Таким образом в тяжеловодных и бериллиевых ядерных реакторах присутствует дополнительный источник нейтронов, обусловленный протеканием фотоядерной реакции.
rdf:langString Фотоядерні реакції (англ. photodisintegration, phototransmutation) — ядерні реакції, що відбуваються при поглинанні гамма-квантів ядрами атомів. Явище випромінювання ядрами нуклонів при ції реакції називається ядерним фотоефектом. Це явище відкрили 1934 року Чедвік і Гольдхабер і далі досліджували Боте і , а потім і Нільс Бор. При поглинанні гамма-кванту ядро отримує надлишок енергії без зміни свого нуклонного складу, а ядро з надлишком енергії є . Як і інші ядерні реакції, поглинання ядром гамма-кванту можливе лише при виконанні необхідних енергетичних і спінових співвідношень. Якщо передана ядру енергія перевищує енергію зв'язку нуклона в ядрі, то розпад утвореного складеного ядра відбувається найчастіше з випромінювання нуклонів, переважно нейтронів. Такий розпад викликає ядерні реакції і які називаються фотоядерними, а явище випромінювання нуклонів у цих реакціях — ядерним фотоефектом. Позначення: * — частинка гамма-випромінювання чи гамма-квант (фотон з високою енергією); * — нейтрон; * — протон. В теорії фотоядерних реакцій використовується статистична модель складеного ядра і модель резонансного прямого фотоефекту. Фотоядерні реакції ідуть з утворенням складеного ядра, однак при збудженні реакцій на ядрах з масовим числом експериментально було виявлено занадто високий вихід у порівнянні з виходом, передбаченим цим механізмом. Крім того, кутовий розподіл протонів з найбільшою енергією виявився неізотропним. Ці факти вказують на додатковий механізм прямої взаємодії, який є суттєвим лише у випадку -реакції на важких і середніх ядрах. Реакція ж завжди іде з утворенням складеного ядра. Першою спостережуваною фотоядерною реакцією було фото-розщеплення дейтрона: Вона проходить без утворення складеного ядра, оскільки ядро дейтерію не має збуджених станів, і може бути викликана гамма-квантами порівняно невисокої енергії (вище 2,23 МеВ). Однак нуклідів з малою енергією зв'язку нуклонів всього декілька, а щоб викликати фотоядерні реакції з іншими ядрами необхідні фотони з енергією не менше 8 МеВ. Фотони з такою енергією виникають у деяких ядерних реакціях чи отримуються при гальмуванні у речовині дуже швидких електронів. При радіоактивному розпаді, зазвичай, таких гамма-квантів не утворюється, тому гамма-кванти β-розпаду не можуть викликати фотоядерні реакції та появу нової наведеної радіоактивності в інших речовинах. Якщо сповільнювачем в ядерному реакторі є берилій чи важка вода, то внаслідок незвично малої енергії зв'язку нейтрона в 9Be і 2H під дією гамма-квантів радіоактивного розпаду на ядрах цих нуклідів ефективно протікають фотоядерні реакції . Особливо багато гамма-квантів при цьому дають радіоактивні продукти поділу урану, але гамма-кванти в ядерному реакторі випромінюють і інші речовини, активовані нейтронами. Таким чином, у важководневих і берилієвих ядерних реакторах наявне додаткове джерело нейтронів внаслідок протіканням фотоядерної реакції.
rdf:langString Fotodesintegração é um processo no qual raios gama de energia extremamente alta interagem com um núcleo atômico e causam uma extrema excitação deste, o qual imediatamente decai em dois ou mais núcleos filhos. Um simples exemplo é quando um único próton ou nêutron é efetivamente expulso do núcleo por um raio gama incidente sobre este, e um exemplo extremo é quando o raio gama induz uma reação espontânea de fissão nuclear. Este processo é essencialmente o reverso da fusão nuclear, aonde elementos mais leves em altas temperaturas combinam-se juntos formando elementos mais pesados e liberando energia. A foto desintegração é endotérmica (absorvendo energia) para núcleos atômicos mais leves que o ferro e exotérmica (liberação de energia) para núcleo mais pesados que o ferro. Estes núcleos de hélio são por sua vez divididos em prótons e nêutrons, os blocos básicos de construção de novos elementos, também através de fotodesintegração. A fotodesintegração é responsável pela nucleossíntese ao menos de alguns pesados, ricos em prótons, elementos via processo p o qual toma lugar em supernovas.
rdf:langString 光致蛻變是極端高能量的γ射線和原子核的交互作用,並且使原子核進入受激態,立刻衰變成為兩或更多個子核的物理過程。一個簡單的例子是,接踵而來的有效的γ射線从原子核中敲出一颗质子或中子,而極端的例子則是γ射線導致自發性的核分裂反應。這種過程根本上是與核融合相反的,原本是轻的元素在高溫下結合在一起形成重元素並釋放出能量。光致蛻變是從比鐵輕的元素吸熱(能量吸收)而從比鐵重的元素放熱放出能量。光致蛻變至少在超新星中對一些重元素和富含質子的元素經由p-過程的核合成有所貢獻。
xsd:nonNegativeInteger 8090

data from the linked data cloud