Passive daytime radiative cooling

http://dbpedia.org/resource/Passive_daytime_radiative_cooling an entity of type: Thing

Passive daytime radiative cooling (PDRC) is a renewable cooling method proposed as a solution to global warming of enhancing terrestrial heat flow to outer space through the installation of thermally-emissive surfaces on Earth that require zero energy consumption or pollution. Because all materials in nature absorb more heat during the day than at night, PDRC surfaces are designed to be high in solar reflectance (to minimize heat gain) and strong in longwave infrared (LWIR) thermal radiation heat transfer through the atmosphere's infrared window (8–13 µm) to cool temperatures during the daytime. It is also referred to as passive radiative cooling (PRC), daytime passive radiative cooling (DPRC), radiative sky cooling (RSC), photonic radiative cooling, and terrestrial radiative cooling. PDRC rdf:langString
rdf:langString Passive daytime radiative cooling
xsd:integer 71855084
xsd:integer 1124702480
rdf:langString Passive daytime radiative cooling (PDRC) is a renewable cooling method proposed as a solution to global warming of enhancing terrestrial heat flow to outer space through the installation of thermally-emissive surfaces on Earth that require zero energy consumption or pollution. Because all materials in nature absorb more heat during the day than at night, PDRC surfaces are designed to be high in solar reflectance (to minimize heat gain) and strong in longwave infrared (LWIR) thermal radiation heat transfer through the atmosphere's infrared window (8–13 µm) to cool temperatures during the daytime. It is also referred to as passive radiative cooling (PRC), daytime passive radiative cooling (DPRC), radiative sky cooling (RSC), photonic radiative cooling, and terrestrial radiative cooling. PDRC differs from solar radiation management because it increases radiative heat emission rather than merely reflecting the absorption of solar radiation. Some estimates propose that if 1-2% of the Earth's surface area were dedicated to PDRC that warming would cease and temperature increases would be rebalanced to survivable levels. Regional variations provide different cooling potentials with desert and temperate climates benefiting more from application than tropical climates, attributed to the effects of humidity and cloud cover on reducing the effectiveness of PDRCs. Low-cost scalable PDRC materials feasible for mass production have been developed, such as coatings, thin films, metafabrics, aerogels, and biodegradable surfaces, to reduce air conditioning, lower urban heat island effect, cool human body temperatures in extreme heat, and move toward carbon neutrality as a zero-energy cooling method. Application of PDRCs may also increase the efficiency of solar energy systems, dew collection techniques, and thermoelectric generation. PDRCs can be modified to be self-adaptive if necessary, 'switching' from passive cooling to heating to mitigate any potential "overcooling" effects in urban environments. They have also been developed in colors other than white, although there is generally a tradeoff in cooling potential, since darker color surfaces are less reflective. Research, development, and interest in PDRCs has grown rapidly since the 2010s, which has been attributed to a scientific breakthrough in the use of photonic metamaterials to achieve daytime cooling in 2014, along with growing concerns over energy use and global warming.
xsd:nonNegativeInteger 118747

data from the linked data cloud