Ordinary least squares
http://dbpedia.org/resource/Ordinary_least_squares an entity of type: Thing
정규방정식(Normal equation 혹은 Ordinary least squares 혹은 linear least squares)은 통계학에서 선형 회귀상에서 알지 못하는 값(parameter)를 예측하기 위한 방법론이다.
rdf:langString
在回归分析当中,最常用的估计(回归系数)的方法是普通最小二乘法(英語:ordinary least squares,簡稱OLS),它基於誤差值之上。用這種方法估计,首先要計算残差平方和(residual sum of squares;RSS),RSS是指将所有误差值的平方加起來得出的数: 與的数值可以用以下算式计算出來: 当中為的平均值,而為的平均值。 假设总体的误差值有一个固定的變異數,這个變異數可以用以下算式估计: 這個数就是均方误差(mean square error),這個分母是样本大小减去模型要估计的参数的量。這個回归模型当中有两个未知的参数(與)。 而這些参数估计的标准误差(standard error)為: 有了上面這个模型,研究者手上就有会有與的估计值,就可以用這個算式來预测的数值。
rdf:langString
في الإحصاء، تشير المربعات الصغرى العادية أو المربعات الصغرى الخطية إلى طريقة تُستخدم لتقدير المعامل غير المعروف في نموذج انحدار خطي. هذه الطريقة تهدف إلى تصغير مجموع المساحات الرأسية التربيعية بين الاستجابات التي تمت ملاحظتها في مجموعة البيانات والاستجابات التي يتوقع حدوثها من التقريب الخطي. ويمكن التعبير عن نتيجة نظرية التقدير بمعادلة بسيطة، خاصةً في حالة المرتد الأحادي من الجانب الأيمن.
rdf:langString
En estadística, los mínimos cuadrados ordinarios (MCO) o mínimos cuadrados lineales es el nombre de un método para encontrar los parámetros poblacionales en un modelo de regresión lineal. Este método minimiza la suma del cuadrado de las distancias verticales entre las respuestas observadas en la muestra y las respuestas del modelo. El parámetro resultante puede expresarse a través de una fórmula sencilla, especialmente en el caso de un único regresor.
rdf:langString
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values of the variable being observed) in the input dataset and the output of the (linear) function of the independent variable.
rdf:langString
La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Lorsque la matrice se décompose en , on parle de régression linéaire univariée (régression linéaire). Lorsqu'il y a plusieurs régresseurs dans la matrice , on a plutôt affaire à une régression linéaire multiple.
rdf:langString
rdf:langString
مربعات صغرى عادية
rdf:langString
Mínimos cuadrados ordinarios
rdf:langString
Méthode des moindres carrés ordinaire
rdf:langString
정규방정식
rdf:langString
Ordinary least squares
rdf:langString
普通最小二乘法
xsd:integer
1651906
xsd:integer
1123558055
rdf:langString
في الإحصاء، تشير المربعات الصغرى العادية أو المربعات الصغرى الخطية إلى طريقة تُستخدم لتقدير المعامل غير المعروف في نموذج انحدار خطي. هذه الطريقة تهدف إلى تصغير مجموع المساحات الرأسية التربيعية بين الاستجابات التي تمت ملاحظتها في مجموعة البيانات والاستجابات التي يتوقع حدوثها من التقريب الخطي. ويمكن التعبير عن نتيجة نظرية التقدير بمعادلة بسيطة، خاصةً في حالة المرتد الأحادي من الجانب الأيمن. ويكون مُقدِّر المربعات الصغرى العادية متسقًا عندما يكون المرتد خارجي ولا يوجد ارتباط المتغيرات المستقلة ضمن معادل انحدار معين، ويكون أمثل في مرتبة المقدر الخطي غير المنحاز عندما يكون الخطأ متنوعًا متجانسًا وغير مترابط تسلسليًا. وتحت هذه الظروف، تزود طريقة المربعات الصغرى العادية بتقدير تباين أصغر غير منحاز عندما تتسم الأخطاء بنسب تباين محدودة. وبافتراض أن الأخطاء موزعة طبيعيًا، فإن طريقة المربعات الصغرى العادية هي مقدار الإمكانية القصوى. وتستخدم هذه الطريقة في الاقتصاد (الاقتصاد القياسي) والهندسة الكهربائية (نظرية التحكم ومعالجة الإشارة) هذه بالإضافة إلى تطبيقها في عِدة مجالات أخرى.
rdf:langString
En estadística, los mínimos cuadrados ordinarios (MCO) o mínimos cuadrados lineales es el nombre de un método para encontrar los parámetros poblacionales en un modelo de regresión lineal. Este método minimiza la suma del cuadrado de las distancias verticales entre las respuestas observadas en la muestra y las respuestas del modelo. El parámetro resultante puede expresarse a través de una fórmula sencilla, especialmente en el caso de un único regresor. El método MCO, siempre y cuando se cumplan los supuestos clave, será consistente cuando los regresores sean exógenos y no haya perfecta multicolinealidad, este será óptimo en la clase de parámetros lineales cuando los errores sean homocedásticos y además no haya autocorrelación. En estas condiciones, el método de MCO proporciona un estimador insesgado de varianza mínima siempre que los errores tengan varianzas finitas. Bajo la suposición adicional de que los errores se distribuyen normalmente, el estimador MCO es el de máxima verosimilitud. Los MCO se utilizan en economía (econometría) y en la ingeniería eléctrica (teoría de control y procesamiento de señales), entre muchas áreas de aplicación.
rdf:langString
La méthode des moindres carrés ordinaire (MCO) est le nom technique de la régression mathématique en statistiques, et plus particulièrement de la régression linéaire. Il s'agit d'un modèle couramment utilisé en économétrie. Il s'agit d'ajuster un nuage de points selon une relation linéaire, prenant la forme de la relation matricielle , où est un terme d'erreur. La méthode des moindres carrés consiste à minimiser la somme des carrés des écarts, écarts pondérés dans le cas multidimensionnel, entre chaque point du nuage de régression et son projeté, parallèlement à l'axe des ordonnées, sur la droite de régression. Lorsque la matrice se décompose en , on parle de régression linéaire univariée (régression linéaire). Lorsqu'il y a plusieurs régresseurs dans la matrice , on a plutôt affaire à une régression linéaire multiple.
rdf:langString
In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values of the variable being observed) in the input dataset and the output of the (linear) function of the independent variable. Geometrically, this is seen as the sum of the squared distances, parallel to the axis of the dependent variable, between each data point in the set and the corresponding point on the regression surface—the smaller the differences, the better the model fits the data. The resulting estimator can be expressed by a simple formula, especially in the case of a simple linear regression, in which there is a single regressor on the right side of the regression equation. The OLS estimator is consistent for the level-one fixed effects when the regressors are exogenous and forms perfect colinearity (rank condition), consistent for the variance estimate of the residuals when regressors have finite fourth moments and—by the Gauss–Markov theorem—optimal in the class of linear unbiased estimators when the errors are homoscedastic and serially uncorrelated. Under these conditions, the method of OLS provides minimum-variance mean-unbiased estimation when the errors have finite variances. Under the additional assumption that the errors are normally distributed with zero mean, OLS is the maximum likelihood estimator that outperforms any non-linear unbiased estimator.
rdf:langString
정규방정식(Normal equation 혹은 Ordinary least squares 혹은 linear least squares)은 통계학에서 선형 회귀상에서 알지 못하는 값(parameter)를 예측하기 위한 방법론이다.
rdf:langString
在回归分析当中,最常用的估计(回归系数)的方法是普通最小二乘法(英語:ordinary least squares,簡稱OLS),它基於誤差值之上。用這種方法估计,首先要計算残差平方和(residual sum of squares;RSS),RSS是指将所有误差值的平方加起來得出的数: 與的数值可以用以下算式计算出來: 当中為的平均值,而為的平均值。 假设总体的误差值有一个固定的變異數,這个變異數可以用以下算式估计: 這個数就是均方误差(mean square error),這個分母是样本大小减去模型要估计的参数的量。這個回归模型当中有两个未知的参数(與)。 而這些参数估计的标准误差(standard error)為: 有了上面這个模型,研究者手上就有会有與的估计值,就可以用這個算式來预测的数值。
xsd:nonNegativeInteger
63565