Nuclear power

http://dbpedia.org/resource/Nuclear_power an entity of type: Thing

Jaderná energetika je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách. V širším smyslu může jít také o projektování a výstavbu jaderných zařízení, především jaderných reaktorů a jaderných elektráren. Jako synonyma se pro tento termín (i v řadě cizích jazyků) méně přesně používají rovněž termíny jaderný průmysl, jaderná energie, atomová energetika, atomová energie, jádro či atom. Označení obsahující slovní základ atom je však třeba považovat za nesprávná a nepřesná, neboť energie uvolněná z atomu je i chemická energie, která se využívá v . rdf:langString
Πυρηνική ενέργεια ονομάζεται η ενέργεια που απελευθερώνεται όταν μετασχηματίζονται και διασπώνται οι ατομικοί πυρήνες. Είναι δηλαδή η δυναμική ενέργεια που είναι εγκλωβισμένη στους πυρήνες των ατόμων λόγω της αλληλεπίδρασης των σωματιδίων που τα συνιστούν. Η πυρηνική ενέργεια απελευθερώνεται κατά τη σχάση ή σύντηξη των πυρήνων και εφόσον οι πυρηνικές αντιδράσεις είναι ελεγχόμενες (όπως συμβαίνει στην καρδιά ενός πυρηνικού αντιδραστήρα) μπορεί να χρησιμοποιηθεί για να καλύψει ενεργειακές ανάγκες. rdf:langString
Feidhmiú eamhnaithe núicléach trí imoibreoir núicléach chun fuinneamh is cumhacht leictreach a sholáthar. Sa bhliain 2004, sa Fhrainc fuarthas 75% den chumhacht leictreach ó fhuinneamh núicléach, sa Bheilg 50%, agus sa Bhreatain timpeall 18%. Ag an am céanna, táirgeadh 20% den chumhacht leictreach i Meiriceá ag 104 imoibreoir núicléach. rdf:langString
原子力(げんしりょく、(英: nuclear energy)とは、原子核の変換や核反応に伴って放出される多量のエネルギーのこと、またはそのエネルギーを兵器や動力源に利用すること。核エネルギー(かくエネルギー)や原子エネルギー(げんしエネルギー)ともいう。単に核(かく、(英: nuclear)と呼ぶ場合には、原子力を指すことが通例である。 rdf:langString
Energetyka jądrowa – zespół zagadnień związanych z uzyskiwaniem na skalę przemysłową energii jądrowej, czyli energii pochodzącej z rozszczepiania jąder pierwiastków ciężkich (głównie uranu 235). rdf:langString
Kärnkraft eller atomkraft avser utvinning av energi ur atomkärnor, antingen genom att spjälka tunga atomkärnor (fission; framförallt uran) eller genom att slå ihop lätta atomkärnor (fusion; väte). Ordet förekommer i svenska media först 1968. rdf:langString
الطاقة النووية هي الطاقة التي يتم توليدها عن طريق التحكم في تفاعلات انشطار أو اندماج الذرة. تستغل هذه الطاقة في محطات توليد الكهرباء النووية، حيث يسخن الماء لإنتاج بخار الماء الذي يستخدم بعد ذلك لتحريك زعنفات لإنتاج الكهرباء. في 2009، شكلت نسبة الكهرباء المنتجة من الطاقة النووية بنحو 13-14% من إجمالي الطاقة الكهربية المنتجة في العالم. كما تعمل الآن أكثر من 150 غوّاصة بالطاقة النووية. rdf:langString
L'energia nuclear és l'energia que sorgeix de partícules que formen el nucli dels àtoms de cada element químic i que s'obté en modificar aquests nuclis per mitjà de certes reaccions nuclears. Una reacció nuclear és aquella en què el nucli atòmic d'un element resulta modificat, ja sigui alterant-se els seus nivells d'energia, passant a esdevenir un isòtop diferent, dividint-se en dos o més fragments (fissió), o bé unint-se a un segon nucli (fusió). Alguns d'aquests processos es donen espontàniament a la natura en alguns nuclis, i de vegades poden provocar-se mitjançant tècniques com ara el bombardeig de neutrons. La principal característica d'aquesta font d'energia és l'alta quantitat d'energia que pot alliberar per unitat de massa del combustible utilitzat en comparació amb qualsevol altra rdf:langString
Kernenergie, Atomenergie, Atomkraft, Kernkraft oder Nuklearenergie ist die Technologie zur großtechnischen Erzeugung von Sekundärenergie mittels Kernspaltung. Diese Technologie wird seit den 1950er Jahren in großem Maßstab zur Stromproduktion genutzt. rdf:langString
Atomkerna energio (aŭ nuklea energio) estas la energio produktita per la procezoj okazantaj en atomkernoj. Ekzistas du ĉefaj procezoj kiuj permesas la praktikan produktadon de energio por teĥnikaj celoj: * La fendiĝo de pezaj nukleoj, ekz-e uranio, kiu nomiĝas nuklea fisio. * La fandiĝo de du malpezaj atomkernoj, kiu nomiĝas fuzio. Tiu ĉi estas la procezo per kiu kreiĝas la energio de la suno kaj la ceteraj steloj. La fisio estas uzata en la t.n. nuklea elektrejo, por la produktado de elektro. La fuzio kaj fisio estas ambaŭ uzataj por armilaj celoj (vidu atombombo). rdf:langString
La energía nuclear o atómica es la que se libera espontánea o artificialmente en las reacciones nucleares. Sin embargo, este término engloba otro significado que es el aprovechamiento de dicha energía para otros fines, tales como la obtención de energía eléctrica, térmica y mecánica a partir de reacciones atómicas.​ De esta manera, es común referirse a la energía nuclear no solo como el resultado de una reacción, sino como un concepto más amplio que incluye los conocimientos y técnicas que permiten la utilización de esta energía por parte del ser humano. rdf:langString
Energia nuklearra atomoaren nukleoan gordetzen den energia da. Atomoak beren ezaugarriei eutsiz banatu daitezkeen partikularik txikienak dira. Atomoaren nukleoan protoiak eta neutroiak daude batera. Energia nuklearrak bi partikulak batera egoteko energia sortzen du. Erreakzio nuklearretan askatzen den energia energia nuklearra da. Erreakzio hauek zenbait elementu kimikoren isotopo batzuen nukleo atomikoetan gerta daitezke. rdf:langString
Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2. Generating electricity from fusion power remains the focus of international research. rdf:langString
Tenaga nuklir adalah penggunaan terkendali reaksi nuklir guna menghasilkan energi panas, yang digunakan untuk pembangkit listrik. Penggunaan Tenaga nuklir guna kepentingan manusia saat ini masih terbatas pada reaksi fisi nuklir dan peluruhan radioaktif. Tenaga nuklir menyumbangkan sekitar 6% dari seluruh kebutuhan energi dunia, dan 13-14% kebutuhan listrik di dunia. Gabungan energi nuklir di Amerika Serikat, Prancis, dan Jepang menyumbang 50% dari seluruh pembangkit listrik nuklir yang ada. rdf:langString
Selon le contexte d'usage, le terme d’énergie nucléaire recouvre plusieurs acceptions, toutes liées à la physique et aux réactions de noyaux atomiques. * Dans le langage courant, l’énergie nucléaire correspond aux usages civils et militaires de l’énergie libérée lors des réactions de fission nucléaire ou de fusion nucléaire de noyaux atomiques au sein d'un réacteur nucléaire ou lors d'une explosion atomique. * Dans le domaine des sciences de la Terre et de l'Univers, l'énergie nucléaire est l’énergie libérée par les réactions de fusion nucléaire au sein des étoiles — par exemple le Soleil — ainsi que par la radioactivité naturelle, la principale source d'énergie du volcanisme de la Terre. * En physique des particules, l’énergie nucléaire est l’énergie associée à la force de cohésion des rdf:langString
L'energia nucleare, o energia atomica, è l'energia liberata dalle reazioni nucleari e dal decadimento radioattivo sotto forma di energia elettromagnetica e cinetica. Questa energia è sfruttata da numerose tecnologie nucleari e ha una particolare rilevanza nel settore energetico, infatti comunemente ci si riferisce all'energia nucleare come a quella liberata in modo controllato nelle centrali nucleari per la produzione di energia elettrica. In una centrale l'energia nucleare viene liberata dalla fissione del combustibile (isotopi di uranio e plutonio) nel reattore e qui convertita in energia termica sfruttabile per la produzione di energia elettrica. È in fase di ricerca la possibilità di sfruttare per scopi energetici anche le reazioni di fusione nucleare. rdf:langString
원자력(原子力, atomic energy), 핵발전(核發電, nuclear power)이란 방사성원소의 원자핵 붕괴(방사선 붕괴 포함) 또는 원자핵의 질량 변화에 의해 방출되는 에너지를 동력자원으로 활용하는 경우를 말하며, 일반적으로 핵분열과 핵융합 과정을 통해 에너지를 생산하는 방식이 알려져 있다. 원자력이 처음 규명된 이후 군사(핵무기), 의학(방사선 치료기), 발전(전기 생산), 가속기(과학적 연구), 산업(비파괴 검사) 등 다양한 분야에서 이용되고 있으며, 그 중에서도 가장 널리 이용되고 있는 분야가 발전이다. 핵에너지 생성의 3가지 유형인 핵분열, 핵융합, 방사성 붕괴 중에서 현재 원자력발전에 이용되는 것은 핵분열 방식이다. 핵융합 방식은 아직 연구 단계에 있으며, 방사성 붕괴에 의한 핵에너지는 그 양이 상대적으로 미량이어서 직접 발전에 이용하기 힘들다. 따라서 우라늄 같은 방사성 물질을 원자로에서 인공적으로 분열시켜 나오는 원자력 에너지로 발전을 한다. 일반적으로 핵분열 조각은 불안정하기 때문에 방사선을 방출하면서 차례로 붕괴되어 일정한 붕괴계열을 거쳐 마침내는 안정핵종으로 된다. 이들 핵조각 및 붕괴과정에서 생긴 핵종을 핵분열 생성물이라 한다. rdf:langString
Kernenergie, nucleaire energie of atoomenergie is energie die is opgewekt door middel van kernreacties. Wanneer atoomkernen van bepaalde chemische elementen door kernsplijting worden omgezet in meerdere lichtere kernen, door kernfusie met elkaar versmelten tot zwaardere kernen of door radioactief verval uiteenvallen, komt er energie vrij in de vorm van warmte en ioniserende straling. Kernsplijting of kernfusie kan worden toegepast in kernwapens. Potentieel kan radioactief materiaal ook worden verwerkt in een vuile bom, die zijn werking ontleent aan radioactief verval van het materiaal. rdf:langString
Energia nuclear ou energia atômica é a energia liberada em uma reação nuclear, ou seja, em processos de transformação de núcleos atômicos. Alguns isótopos de certos elementos químicos apresentam a capacidade de se transformar em outros isótopos ou elementos por meio de reações nucleares, emitindo energia durante esse processo. Baseia-se no princípio da equivalência massa-energia, proposto por Albert Einstein, segundo a qual durante reações nucleares ocorre transformação de massa em energia. rdf:langString
Ядерная энергетика (Атомная энергетика) — отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло. rdf:langString
Я́дерна енерге́тика, або а́томна енерге́тика — галузь енергетики, що використовує ядерну енергію для електрифікації і теплофікації; галузь науки і техніки, що розробляє методи і засоби перетворення ядерної енергії в електричну і теплову. rdf:langString
核动力(英語:nuclear power,也稱原子能或核能)是利用可控核反应来获取能量,然后产生动力、热量和电能。该术语包括核裂变,核衰变和核聚变。产生核电的工厂被称作核电站,将核能转化为电能的装置包括反应堆和汽轮发电机。核能在反应堆中被转化为热能,热能将水变为蒸汽推动汽轮发电机组发电。 利用核反应来获取能量的原理是:当裂变材料(例如铀-235)在受人为控制的条件下发生核裂变时,核能就会以热的形式被释放出来,这些热量会被用来驱动蒸汽机。蒸汽机可以直接提供动力,也可以连接发电机来产生电能。世界各国军队中的某些潜艇及航空母舰以核能为动力(主要是美國)。 2020年全球电力有10.1%由核能发电提供。截至2021年7月,全球可运行的核电反应堆443座,总装机容量为394.2GWe。全球在建核电反应堆54座,总装机容量为61.2GWe。超过150艘使用核动力推进的舰船已被建造,由超过180个核反应堆提供动力。 核动力相關的重大事故包括三哩岛核泄漏事故(1979年)、切尔诺贝利核事故(1986年)、福岛第一核电站事故(2011年)和一些核动力潜艇事故。在各種能源的事故之中,按照每个单位发电的人命损失计算,核电的安全记录優于其他几种主要的发电方式。 rdf:langString
rdf:langString Nuclear power
rdf:langString طاقة نووية
rdf:langString Energia nuclear
rdf:langString Jaderná energetika
rdf:langString Kernenergie
rdf:langString Πυρηνική ενέργεια
rdf:langString Nuklea energio
rdf:langString Energia nuklear
rdf:langString Energía nuclear
rdf:langString Fuinneamh núicléach
rdf:langString Tenaga nuklir
rdf:langString Énergie nucléaire
rdf:langString Energia nucleare
rdf:langString 原子力
rdf:langString 원자력
rdf:langString Kernenergie
rdf:langString Energetyka jądrowa
rdf:langString Energia nuclear
rdf:langString Kärnkraft
rdf:langString Ядерная энергетика
rdf:langString 核動力
rdf:langString Ядерна енергетика
xsd:integer 22153
xsd:integer 1124931442
rdf:langString right
rdf:langString Nuclear power generation and operational nuclear reactors since 1997
rdf:langString Share of electricity production from nuclear, 2015
rdf:langString The status of nuclear power globally
rdf:langString Number of electricity-generating civilian reactors by type as of 2014
rdf:langString World total primary energy supply of 162,494 TWh by fuels in 2017
rdf:langString #de2821
rdf:langString #005CE6
rdf:langString #00CC4B
rdf:langString #313c42
rdf:langString #7C6250
rdf:langString #ef8e39
rdf:langString #ABFF57
rdf:langString Chart | width=100 | height=100 | type=pie | x=PWR,BWR,GCR,PHWR,LWGR,FBR | y1=277,80,15,49,15,2 | showValues= | colors=#1f77b4, #ff7f0e, #2ca02c, #d62728, #9467bd, #8c564b
rdf:langString Chart | width = 180 | height = 150 | type=area | interpolate=step-before | y= 2263.79 , 2298.27 , 2378.93 , 2443.85 , 2511.09 , 2553.18 , 2504.78 , 2616.24 , 2626.34 , 2660.85 , 2608.18 , 2597.81 , 2558.06 , 2629.82 , 2517.98 , 2346.19 , 2358.86 , 2410.37 , 2441.33 , 2477.30 , 2502.82 , 2562.76 , 2586.16 | xAxisTitle=Year | xAxisAngle = -45 | xType=date | yType=number | yAxisTitle=Generation (TWh) | x = 1997 ,1998 ,1999 , 2000 ,2001 ,2002 ,2003 ,2004 , 2005 ,2006 ,2007 ,2008 ,2009 , 2010 ,2011 ,2012 ,2013 ,2014 , 2015 , 2016, 2017, 2018, 2019 Chart | width = 180 | height = 150 | type=area | interpolate=step-before | y = 441 , 438 , 434 , 438 , 438 , 444 , 443 , 443 , 443 , 443 , 439 , 439 , 440 , 442 , 448 , 440 , 441 , 439 , 448 , 451 , 451 , 457 , 456 | xAxisTitle=Year | xAxisAngle = -45 | xType=date | yType=number | yAxisTitle=Number of reactors | x = 1997 ,1998 ,1999 , 2000 ,2001 ,2002 ,2003 ,2004 , 2005 ,2006 ,2007 ,2008 ,2009 , 2010 ,2011 ,2012 ,2013 ,2014 , 2015 , 2016, 2017, 2018, 2019
rdf:langString horizontal
rdf:langString Nuclear power station.svg
rdf:langString Nuclear-energy-electricity-production.png
rdf:langString Oil
rdf:langString Hydro
rdf:langString Others
rdf:langString Nuclear
rdf:langString Natural Gas
rdf:langString Biofuels and waste
rdf:langString Coal/Peat/Shale
rdf:langString bottom
rdf:langString Wikiversity
rdf:langString right
xsd:double 1.8 2.5 4.9 9.5 22.2 27.1 32
xsd:integer 220 300 520
rdf:langString L'energia nuclear és l'energia que sorgeix de partícules que formen el nucli dels àtoms de cada element químic i que s'obté en modificar aquests nuclis per mitjà de certes reaccions nuclears. Una reacció nuclear és aquella en què el nucli atòmic d'un element resulta modificat, ja sigui alterant-se els seus nivells d'energia, passant a esdevenir un isòtop diferent, dividint-se en dos o més fragments (fissió), o bé unint-se a un segon nucli (fusió). Alguns d'aquests processos es donen espontàniament a la natura en alguns nuclis, i de vegades poden provocar-se mitjançant tècniques com ara el bombardeig de neutrons. La principal característica d'aquesta font d'energia és l'alta quantitat d'energia que pot alliberar per unitat de massa del combustible utilitzat en comparació amb qualsevol altra emprada per l'ésser humà. Hi ha dues formes diferents d'obtenir energia nuclear: la fissió nuclear, en la qual un nucli atòmic es trenca en dos o més fragments (emetent també neutrons, fotons i d'altres partícules), i la fusió nuclear, en la qual dos nuclis atòmics s'uneixen per a donar lloc a un de més pesant (acompanyada també de l'emissió de radiació). Una altra tècnica, emprada en aplicacions autònomes de llarga durada i significatiu consum elèctric, és la utilització de generadors termoelèctrics de radioisòtops (GTR, o en anglès RTG), en els que mitjançant l'efecte Seebeck s'aprofita la calor generada per una font radioactiva per produir electricitat. Aquests generadors també reben popularment el nom de piles atòmiques. En una central nuclear, l'energia nuclear alliberada es manifesta en forma d'energia cinètica de les partícules emeses i de radiació electromagnètica, que generen calor. Aquesta energia tèrmica pot transformar-se en energia mecànica mitjançant màquines tèrmiques, com ara les turbines de vapor. L'energia mecànica pot transformar-se en elèctrica (electricitat) per a la seva distribució a la xarxa elèctrica, o bé pot ésser emprada directament en el transport, com per exemple a vaixells i submarins de propulsió nuclear.
rdf:langString Jaderná energetika je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách. V širším smyslu může jít také o projektování a výstavbu jaderných zařízení, především jaderných reaktorů a jaderných elektráren. Jako synonyma se pro tento termín (i v řadě cizích jazyků) méně přesně používají rovněž termíny jaderný průmysl, jaderná energie, atomová energetika, atomová energie, jádro či atom. Označení obsahující slovní základ atom je však třeba považovat za nesprávná a nepřesná, neboť energie uvolněná z atomu je i chemická energie, která se využívá v .
rdf:langString الطاقة النووية هي الطاقة التي يتم توليدها عن طريق التحكم في تفاعلات انشطار أو اندماج الذرة. تستغل هذه الطاقة في محطات توليد الكهرباء النووية، حيث يسخن الماء لإنتاج بخار الماء الذي يستخدم بعد ذلك لتحريك زعنفات لإنتاج الكهرباء. في 2009، شكلت نسبة الكهرباء المنتجة من الطاقة النووية بنحو 13-14% من إجمالي الطاقة الكهربية المنتجة في العالم. كما تعمل الآن أكثر من 150 غوّاصة بالطاقة النووية. ينظر العلماء إلى الطاقة النووية كمصدر حقيقي لا ينضب للطاقة. ومما يثير المعارضة حول مستقبل الطاقة النووية هو التكاليف العالية لبناء المفاعلات، ومخاوف العامة المتعلقة بالسلامة، وصعوبة التخلص الآمن من المخلفات عالية الإشعاع. بالنسبة إلى التكلفة فهي عالية نسبيا من حيث بناء المفاعل ولكن تلك التكاليف تعوض بمرور الوقت حيث أن الوقود النووي رخيص نسبيا. وقد تقدمت الصناعات النووية كثيراً بحيث أن لديها الاستعدادات لحل مسائل سلامة تشغيل المفاعلات والتخلص السليم من النفايات المشعة الضارة.
rdf:langString Πυρηνική ενέργεια ονομάζεται η ενέργεια που απελευθερώνεται όταν μετασχηματίζονται και διασπώνται οι ατομικοί πυρήνες. Είναι δηλαδή η δυναμική ενέργεια που είναι εγκλωβισμένη στους πυρήνες των ατόμων λόγω της αλληλεπίδρασης των σωματιδίων που τα συνιστούν. Η πυρηνική ενέργεια απελευθερώνεται κατά τη σχάση ή σύντηξη των πυρήνων και εφόσον οι πυρηνικές αντιδράσεις είναι ελεγχόμενες (όπως συμβαίνει στην καρδιά ενός πυρηνικού αντιδραστήρα) μπορεί να χρησιμοποιηθεί για να καλύψει ενεργειακές ανάγκες.
rdf:langString Atomkerna energio (aŭ nuklea energio) estas la energio produktita per la procezoj okazantaj en atomkernoj. Ekzistas du ĉefaj procezoj kiuj permesas la praktikan produktadon de energio por teĥnikaj celoj: * La fendiĝo de pezaj nukleoj, ekz-e uranio, kiu nomiĝas nuklea fisio. * La fandiĝo de du malpezaj atomkernoj, kiu nomiĝas fuzio. Tiu ĉi estas la procezo per kiu kreiĝas la energio de la suno kaj la ceteraj steloj. La fisio estas uzata en la t.n. nuklea elektrejo, por la produktado de elektro. La fuzio kaj fisio estas ambaŭ uzataj por armilaj celoj (vidu atombombo). La ĝusta nomo de tiu tipo de energio estas "atomkerna energio" aŭ "nuklea energio". Oni tre ofte uzas la vorton "atomenergio", sed tio estas principe erara, ĉar ja ankaŭ la ĥemiaj procezoj okazas en la atomo, kvankam ne en la kerno.
rdf:langString La energía nuclear o atómica es la que se libera espontánea o artificialmente en las reacciones nucleares. Sin embargo, este término engloba otro significado que es el aprovechamiento de dicha energía para otros fines, tales como la obtención de energía eléctrica, térmica y mecánica a partir de reacciones atómicas.​ De esta manera, es común referirse a la energía nuclear no solo como el resultado de una reacción, sino como un concepto más amplio que incluye los conocimientos y técnicas que permiten la utilización de esta energía por parte del ser humano. Estas reacciones se dan en los núcleos atómicos de algunos isótopos de ciertos elementos químicos (radioisótopos), siendo la más conocida la fisión del uranio-235 (235U), con la que funcionan los reactores nucleares, y la más habitual en la naturaleza, en el interior de las estrellas, la fusión del par deuterio-tritio (2H-3H). Sin embargo, para producir este tipo de energía aprovechando reacciones nucleares pueden ser utilizados muchos otros isótopos de varios elementos químicos, como el torio-232, el plutonio-239, el estroncio-90 o el polonio-210 (232Th, 239Pu, 90Sr, 210Po; respectivamente). Existen varias disciplinas y/o técnicas que usan de base la energía atómica y van desde la generación de energía eléctrica en las centrales nucleares hasta las técnicas de análisis de datación arqueológica (arqueometría nuclear), la medicina nuclear usada en los hospitales, etc. Los sistemas más investigados y trabajados para la obtención de energía aprovechable a partir de la energía nuclear de forma masiva son la fisión nuclear y la fusión nuclear. La energía nuclear puede transformarse de forma descontrolada, dando lugar al armamento nuclear; o controlada en reactores nucleares en los que se produce energía eléctrica, mecánica o térmica. Tanto los materiales usados como el diseño de las instalaciones son completamente diferentes en cada caso. Otra técnica, empleada principalmente en pilas de mucha duración para sistemas que requieren poco consumo eléctrico, es la utilización de generadores termoeléctricos de radioisótopos (GTR, o RTG en inglés), en los que se aprovechan los distintos modos de desintegración para generar electricidad en sistemas de termopares a partir del calor transferido por una fuente radiactiva. La energía desprendida en esos procesos nucleares suele aparecer en forma de partículas subatómicas en movimiento. Esas partículas, al frenarse en la materia que las rodea, producen energía térmica. Esta energía térmica se transforma en energía mecánica utilizando motores de combustión externa, como las turbinas de vapor. Dicha energía mecánica puede ser empleada en el transporte, como por ejemplo en los buques nucleares. La principal característica de este tipo de energía es la alta calidad de la energía que puede producirse por unidad de masa de material utilizado en comparación con cualquier otro tipo de energía conocida por el ser humano, pero sorprende la poca eficiencia del proceso, ya que se desaprovecha entre un 86 % y 92 % de la energía que se libera.​ En las reacciones nucleares se suele liberar una grandísima cantidad de energía debido en parte a que la masa de partículas involucradas en este proceso se transforma directamente en energía. Lo anterior se suele explicar basándose en la relación masa-energía propuesta por el físico Albert Einstein.
rdf:langString Kernenergie, Atomenergie, Atomkraft, Kernkraft oder Nuklearenergie ist die Technologie zur großtechnischen Erzeugung von Sekundärenergie mittels Kernspaltung. Diese Technologie wird seit den 1950er Jahren in großem Maßstab zur Stromproduktion genutzt. Mit Stand November 2022 waren 423 Reaktorblöcke mit einer Gesamtleistung von 379,3 GW in 32 Ländern in Betrieb. Weitere 56 Reaktorblöcke mit einer Gesamtleistung von 57,7 GW befinden sich in Bau. Dazu sind mehr als 100 Kernkraftwerke für das kommende Jahrzehnt in Planung. Da parallel zu den Neubauten bisher auch schon 203 Kernkraftwerksblöcke abgeschaltet wurden, blieb die Zahl der Reaktoren seit den 1990er Jahren weitgehend konstant. Durch die weltweit steigende Stromerzeugung sank der Anteil der Kernkraft von 1996 bis 2018 von 17,5 % auf 10,15 %. 2021 war die in Kernkraftwerken erzeugte elektrische Energie 0,1 Prozent geringer als 2006, als diese ein historisches Hoch erreichte. In der EU decken Kernkraftwerke etwa 25 % der verbrauchten Elektrizität (787 TWh Erzeugung bei 117 GW installierter Leistung).Neben stationären Kernreaktoren gibt es etwa 180 Reaktoren auf ca. 140 Wasserfahrzeugen, darunter Atom-U-Boote, Flugzeugträger, einige Atomeisbrecher, 4 Frachtschiffe, sowie ein seegestütztes Kernkraftwerk. Es wurden auch bereits Satelliten mit Kernreaktoren betrieben und Reaktorkonzepte für Flugzeuge erforscht. Zu den Vor- und Nachteilen der Kernenergie gibt es unterschiedliche Ansichten, insbesondere wird ihre Sicherheit kontrovers diskutiert. Betrachtet man ausschließlich Todesfälle der Vergangenheit gehören Kernkraftwerke zu den sichersten Mitteln zur Stromproduktion. Bisher gibt es weder in Deutschland noch in der Schweiz ein Endlager für radioaktive Abfälle. Von Kritikern wird die kohlenstoffarme Kernenergie im Hinblick auf den Stopp des Klimawandels als zu langsam verfügbar und, im Vergleich zu einer Mischung aus Solar-, Wind-, Wasser- und Speichersystemen, als zu teuer gesehen.
rdf:langString Energia nuklearra atomoaren nukleoan gordetzen den energia da. Atomoak beren ezaugarriei eutsiz banatu daitezkeen partikularik txikienak dira. Atomoaren nukleoan protoiak eta neutroiak daude batera. Energia nuklearrak bi partikulak batera egoteko energia sortzen du. Erreakzio nuklearretan askatzen den energia energia nuklearra da. Erreakzio hauek zenbait elementu kimikoren isotopo batzuen nukleo atomikoetan gerta daitezke. Mota honetako erreakziorik ezagunena, erreaktore nuklearretan arrunta dena, uranio-235 isotopoaren (235U) fisioa da. Hala ere, erreaktoreetan beste isotopo batzuk parte hartzen duten erreakzioak ere gertatzen dira. Naturako erreakzio nuklearrik usuena izarretan gertatzen den deuterio-tritio (2H-3H) bikotearen fusioa da. Hedaduraz, energia nuklear deritzo, baita ere, energia horretaz egiten den aprobetxamenduari, esaterako energia elektrikoa edo energia termikoa lortzeko prozesuari, eta aprobetxamendu horren inguruan existitzen den ezagutza eta teknikei.
rdf:langString Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2. Generating electricity from fusion power remains the focus of international research. Most nuclear power plants use thermal reactors with enriched uranium in a once-through fuel cycle. Fuel is removed when the percentage of neutron absorbing atoms becomes so large that a chain reaction can no longer be sustained, typically three years. It is then cooled for several years in on-site spent fuel pools before being transferred to long term storage. The spent fuel, though low in volume, is high-level radioactive waste. While its radioactivity decreases exponentially it must be isolated from the biosphere for hundreds of thousands of years, though newer technologies (like fast reactors) have the potential to reduce this significantly. Because the spent fuel is still mostly fissionable material, some countries (e.g. France and Russia) reprocess their spent fuel by extracting fissile and fertile elements for fabrication in new fuel, although this process is more expensive than producing new fuel from mined uranium. All reactors breed some plutonium-239, which is found in the spent fuel, and because Pu-239 is the preferred material for nuclear weapons, reprocessing is seen as a weapon proliferation risk. The first nuclear power plant was built in the 1950s. The global installed nuclear capacity grew to 100 GW in the late 1970s, and then expanded rapidly during the 1980s, reaching 300 GW by 1990. The 1979 Three Mile Island accident in the United States and the 1986 Chernobyl disaster in the Soviet Union resulted in increased regulation and public opposition to nuclear plants. These factors, along with high cost of construction, resulted in the global installed capacity only increasing to 390 GW by 2022. These plants supplied 2,586 terawatt hours (TWh) of electricity in 2019, equivalent to about 10% of global electricity generation, and were the second-largest low-carbon power source after hydroelectricity. As of September 2022, there are 437 civilian fission reactors in the world, with overall capacity of 393 GW, 57 under construction and 102 planned, with a combined capacity of 62 GW and 96 GW, respectively. The United States has the largest fleet of nuclear reactors, generating over 800 TWh of zero-emissions electricity per year with an average capacity factor of 92%. Average global capacity factor is 89%. Most new reactors under construction are generation III reactors in Asia. Nuclear power generation causes one of the lowest levels of fatalities per unit of energy generated compared to other energy sources. Coal, petroleum, natural gas and hydroelectricity each have caused more fatalities per unit of energy due to air pollution and accidents. Nuclear power plants emit no greenhouse gases. One of the dangers of nuclear power is the potential for accidents like the Fukushima nuclear disaster in Japan in 2011. There is a debate about nuclear power. Proponents contend that nuclear power is a safe, sustainable energy source that reduces carbon emissions. The anti-nuclear movement contends that nuclear power poses many threats to people and the environment and is too expensive and slow to deploy when compared to alternative sustainable energy sources.
rdf:langString Feidhmiú eamhnaithe núicléach trí imoibreoir núicléach chun fuinneamh is cumhacht leictreach a sholáthar. Sa bhliain 2004, sa Fhrainc fuarthas 75% den chumhacht leictreach ó fhuinneamh núicléach, sa Bheilg 50%, agus sa Bhreatain timpeall 18%. Ag an am céanna, táirgeadh 20% den chumhacht leictreach i Meiriceá ag 104 imoibreoir núicléach.
rdf:langString Tenaga nuklir adalah penggunaan terkendali reaksi nuklir guna menghasilkan energi panas, yang digunakan untuk pembangkit listrik. Penggunaan Tenaga nuklir guna kepentingan manusia saat ini masih terbatas pada reaksi fisi nuklir dan peluruhan radioaktif. Para peneliti sedang melakukan percobaan fusi nuklir untuk menghasilkan energi. Energi panas dari fusi nuklir jauh lebih banyak dari fisi nuklir, tetapi sampai saat ini belum dapat ditemukan wadah atau tempat sebagai reaktornya. Semua jenis gunung meleleh jika dipakai fusi, jadi sampai saat ini fusi nuklir belum dapat digunakan untuk menghasilkan energi listrik. Tenaga nuklir menyumbangkan sekitar 6% dari seluruh kebutuhan energi dunia, dan 13-14% kebutuhan listrik di dunia. Gabungan energi nuklir di Amerika Serikat, Prancis, dan Jepang menyumbang 50% dari seluruh pembangkit listrik nuklir yang ada. Penggunaan energi nuklir sampai saat ini masih kontroversial dan banyak memunculkan perdebatan. Para pendukungnya, seperti Asosiasi Nuklir Dunia dan IAEA, mengatakan bahwa energi nuklir adalah salah satu sumber energi yang dapat mengurangi emisi karbon. Yang menolak, seperti Greenpeace dan , mempercayai bahwa nuklir akan membahayakan manusia dan lingkungan. Beberapa kecelakaan akibat nuklir dan radiasi telah bermunculan. Kecelakaan akibat pembangkit listrik tenaga nuklir di antaranya Bencana Chernobyl (1986), Bencana nuklir Fukushima Daiichi (2011), dan Bencana Three Mile Island (1979). Untuk kecelakaan kecil pada misalnya pada (1961), (1968), dan (1985). Penelitian internasional terus melakukan peningkatan keamanan energi nuklir, seperti dengan , dan adalanya kemungkinan untuk menggunakan fusi nuklir.
rdf:langString L'energia nucleare, o energia atomica, è l'energia liberata dalle reazioni nucleari e dal decadimento radioattivo sotto forma di energia elettromagnetica e cinetica. Questa energia è sfruttata da numerose tecnologie nucleari e ha una particolare rilevanza nel settore energetico, infatti comunemente ci si riferisce all'energia nucleare come a quella liberata in modo controllato nelle centrali nucleari per la produzione di energia elettrica. In una centrale l'energia nucleare viene liberata dalla fissione del combustibile (isotopi di uranio e plutonio) nel reattore e qui convertita in energia termica sfruttabile per la produzione di energia elettrica. È in fase di ricerca la possibilità di sfruttare per scopi energetici anche le reazioni di fusione nucleare. Al 2020 l'energia nucleare costituisce circa il 10% della produzione di energia elettrica globale, ed è stata la seconda fonte di energia a basse emissioni di carbonio dopo quella idroelettrica. È diffusa in 32 stati che ospitano 442 reattori nucleari a fissione per una capacità installata di 392,6 GW. Ci sono inoltre 53 reattori in costruzione e 98 in programma, con una capacità rispettivamente di 60 GW e 103 GW e principalmente in Asia. Gli Stati Uniti d'America hanno la maggior quantità di reattori nucleari, che generano ogni anno più di 800 TWh di elettricità a basse emissioni con un fattore di capacità medio del 92%. Il fattore di capacità globale medio per l'energia nucleare è dell'89%. L'energia nucleare è una delle fonti di energia più sicure in termini di morti per unità di energia prodotta. Il carbone, il petrolio, il gas naturale e l'energia idroelettrica hanno tutte causato più morti per unità di energia generata rispetto al nucleare, per via dell'inquinamento atmosferico e degli incidenti. L'incidente più grave avvenuto in un impianto nucleare è quello di Černobyl' in Ucraina (allora Unione Sovietica) nel 1986, seguito dal disastro di Fukushima provocato da un maremoto nel 2011 e dal più contenuto incidente di Three Mile Island avvenuto negli Stati Uniti nel 1979. C'è da tempo un dibattito sull'energia nucleare. I sostenitori, come la World Nuclear Association, affermano che l'energia nucleare è una fonte sicura e sostenibile che ridurrebbe le emissioni di anidride carbonica. Di contro, gli oppositori, come Greenpeace e NIRS, affermano che l'energia nucleare pone molte minacce alla popolazione e all'ambiente e che la costruzione di impianti è troppo cara e lenta rispetto alle fonti di energia sostenibili. Il nucleare è regolamentato dall''Agenzia internazionale per l'energia atomica (AIEA o IAEA), che si occupa di promuovere l'utilizzo pacifico di questa forma di energia e di impedirne l'utilizzo per scopi militari, svolgendo funzioni di sorveglianza e controllo sulla sicurezza degli impianti esistenti e quelli in corso di realizzazione o progettazione.
rdf:langString Selon le contexte d'usage, le terme d’énergie nucléaire recouvre plusieurs acceptions, toutes liées à la physique et aux réactions de noyaux atomiques. * Dans le langage courant, l’énergie nucléaire correspond aux usages civils et militaires de l’énergie libérée lors des réactions de fission nucléaire ou de fusion nucléaire de noyaux atomiques au sein d'un réacteur nucléaire ou lors d'une explosion atomique. * Dans le domaine des sciences de la Terre et de l'Univers, l'énergie nucléaire est l’énergie libérée par les réactions de fusion nucléaire au sein des étoiles — par exemple le Soleil — ainsi que par la radioactivité naturelle, la principale source d'énergie du volcanisme de la Terre. * En physique des particules, l’énergie nucléaire est l’énergie associée à la force de cohésion des nucléons (protons et neutrons), la force nucléaire forte au sein du noyau des atomes. Les transformations du noyau libérant cette énergie sont les réactions nucléaires. La force nucléaire faible régit les réactions entre particules et neutrinos.
rdf:langString 원자력(原子力, atomic energy), 핵발전(核發電, nuclear power)이란 방사성원소의 원자핵 붕괴(방사선 붕괴 포함) 또는 원자핵의 질량 변화에 의해 방출되는 에너지를 동력자원으로 활용하는 경우를 말하며, 일반적으로 핵분열과 핵융합 과정을 통해 에너지를 생산하는 방식이 알려져 있다. 원자력이 처음 규명된 이후 군사(핵무기), 의학(방사선 치료기), 발전(전기 생산), 가속기(과학적 연구), 산업(비파괴 검사) 등 다양한 분야에서 이용되고 있으며, 그 중에서도 가장 널리 이용되고 있는 분야가 발전이다. 핵에너지 생성의 3가지 유형인 핵분열, 핵융합, 방사성 붕괴 중에서 현재 원자력발전에 이용되는 것은 핵분열 방식이다. 핵융합 방식은 아직 연구 단계에 있으며, 방사성 붕괴에 의한 핵에너지는 그 양이 상대적으로 미량이어서 직접 발전에 이용하기 힘들다. 따라서 우라늄 같은 방사성 물질을 원자로에서 인공적으로 분열시켜 나오는 원자력 에너지로 발전을 한다. 사실 핵분열을 이용한 원자력 에너지가 처음 이용된 것은 무기 분야가 먼저이다. 제2차 세계대전 중에 미국에서 실시한 맨해튼 프로젝트의 결과 최초의 핵무기 폭발실험이 이루어진 뒤 1945년 8월 6일과 9일에 일본의 히로시마와 나가사키에 각각 원자폭탄이 투하되어 수십만 명을 사망에 이르게 하였다. 이후 미국과 구소련을 중심으로 많은 나라들이 경쟁적으로 핵무기 개발에 몰두하나, 원자폭탄 투하의 참상을 목격한 과학자와 정치인들은 원자력의 평화적 이용을 강조하면서 원자로를 개발하기 시작해 원자력을 에너지 발전에 이용하게 되었다. 전 세계의 화력, 원자력, 수력, 풍력, 태양열 등 전기를 생산하는 방식 중 현재 가장 큰 비중을 차지하는 것은 화력과 원자력 발전 방식이다. 화력발전은 석탄, 석유 가스와 같은 화석연료의 연소에 의한 에너지를 열에너지로 변환하여 증기를 생산한 후 이 증기를 이용하여 터빈, 발전기를 돌려 전기를 생산하는 방식이고, 원자력발전은 핵분열 반응에서 나온 에너지를 이용하여 물을 끓여 증기를 생산하고 이 수증기의 힘으로 터빈을 돌려 전기를 생산하는 방식이다. 두 방식 모두 물을 끓여 증기의 힘으로 터빈과 발전기를 돌려 전기를 생산하지만, 에너지 발생 효율에서는 엄청난 차이가 난다. 원자력발전에서 주로 사용하는 핵분열 물질인 우라늄-235 1kg을 모두 핵분열시키면 약 2x1013cal의 에너지가 나오며 이와 동일한 에너지를 발생시키기 위해 석유는 약 9,000드럼, 석탄은 약 3,000톤이 필요하다. 일반적으로 핵분열 조각은 불안정하기 때문에 방사선을 방출하면서 차례로 붕괴되어 일정한 붕괴계열을 거쳐 마침내는 안정핵종으로 된다. 이들 핵조각 및 붕괴과정에서 생긴 핵종을 핵분열 생성물이라 한다. 핵분열로 생긴 중성자를 이용하여 어느 세대의 처음에 있었던 중성자 수에 대하여 그 세대의 마지막에 있는 중성자 수의 비, 즉 증배계수가 1이 되는 임계상태를 지속적으로 유지할 수 있도록 연쇄반응을 조절, 운전하는 장치가 원자로이다. 다시 말해서 원자로는 우라늄(U), 플루토늄(Pu), 토륨(Th) 등이 핵분열성 물질을 연료로 사용하여 그 핵분열의 연쇄반응을 제어하면서 에너지를 끄집어 내거나 강한 중성자원을 만드는 장치이다. 2009년 원자력은 전 세계 전력의 15%를 차지하고 있으며, 또한 151척 이상의 선박에서 원자로를 동력으로 사용하고 있다.
rdf:langString 原子力(げんしりょく、(英: nuclear energy)とは、原子核の変換や核反応に伴って放出される多量のエネルギーのこと、またはそのエネルギーを兵器や動力源に利用すること。核エネルギー(かくエネルギー)や原子エネルギー(げんしエネルギー)ともいう。単に核(かく、(英: nuclear)と呼ぶ場合には、原子力を指すことが通例である。
rdf:langString Energetyka jądrowa – zespół zagadnień związanych z uzyskiwaniem na skalę przemysłową energii jądrowej, czyli energii pochodzącej z rozszczepiania jąder pierwiastków ciężkich (głównie uranu 235).
rdf:langString Kernenergie, nucleaire energie of atoomenergie is energie die is opgewekt door middel van kernreacties. Wanneer atoomkernen van bepaalde chemische elementen door kernsplijting worden omgezet in meerdere lichtere kernen, door kernfusie met elkaar versmelten tot zwaardere kernen of door radioactief verval uiteenvallen, komt er energie vrij in de vorm van warmte en ioniserende straling. In kerncentrales wordt kernenergie uit kernsplijting gebruikt voor het produceren van elektriciteit. Op 1 januari 2021 waren er wereldwijd 442 kernreactoren operationeel in kerncentrales. Ze produceren samen 10% van de elektriciteit in de wereld. Daarnaast hebben veel onderzeeërs, vliegdekschepen alsook enkele atoomijsbrekers een nucleaire aandrijving gebaseerd op kernsplijting. Bij kernsplijting ontstaat als bijproduct radioactief afval, bestaande uit laag/middel- en hoogradioactief afval. Het afval blijft deels honderdduizenden tot miljoenen jaren hoog-radioactief. Een voorbeeld van kernenergie uit kernfusie is de warmtestraling die in sterren, zoals de Zon, wordt opgewekt. Er is al veel onderzoek gedaan naar de toepassing van kernfusie in kerncentrales, ook wel fusie-energie genoemd, maar er is nog geen zicht op de technische en economische haalbaarheid daarvan. Kernsplijting of kernfusie kan worden toegepast in kernwapens. Potentieel kan radioactief materiaal ook worden verwerkt in een vuile bom, die zijn werking ontleent aan radioactief verval van het materiaal. Radioactief verval wordt ook ingezet voor medische toepassingen in de vorm van medische isotopen, waaronder bij de behandeling van kanker. In Nederland wordt in het reactorcentrum Petten een derde van alle medische isotopen in de wereld geproduceerd. Sinds de jaren 1970 is er wereldwijd veel weerstand tegen kernenergie, met als voornaamste bezwaren het risico op kernrampen, nucleaire proliferatie en het ontstaan van kernafval, waarbij langdurige opslag niet als duurzame oplossing voor dit afval wordt beschouwd. Verdere bezwaren zijn de hoge bouwkosten en bouwtijd van een kerncentrale. De kernrampen van Tsjernobyl en Fukushima hebben verder aan de tegenstand bijgedragen. Daarnaast komen er kleinere kernongevallen voor. In het kader van de discussie over de opwarming van de Aarde en de uitputting van grondstoffen krijgt kernenergie hernieuwde aandacht als alternatief voor het gebruik van fossiele brandstoffen. Dit met het argument dat deze energiebron bijdraagt aan het beperken van de opwarming vanwege het gebrek aan uitstoot van broeikasgassen bij de productie. Ook vergen kerncentrales weinig ruimte en weinig schaarse grondstoffen voor de bouw in vergelijking met windturbines en zonnepanelen, per opgewekte hoeveelheid energie. Uranium, dat meestal als bron van brandstof dient, is een veelvoorkomend element op Aarde. De risico's van kernrampen, kernongevallen en kernafval worden door voorstanders kleiner geacht dan de risico's van veel huidige alternatieven voor energieproductie (o.a. klimaatverandering, luchtvervuiling, leveringszekerheid).
rdf:langString Energia nuclear ou energia atômica é a energia liberada em uma reação nuclear, ou seja, em processos de transformação de núcleos atômicos. Alguns isótopos de certos elementos químicos apresentam a capacidade de se transformar em outros isótopos ou elementos por meio de reações nucleares, emitindo energia durante esse processo. Baseia-se no princípio da equivalência massa-energia, proposto por Albert Einstein, segundo a qual durante reações nucleares ocorre transformação de massa em energia. Foi descoberta por Otto Hahn e Lise Meitner com a observação de uma fissão nuclear depois da irradiação de urânio com nêutrons, que tinha como objetivo produzir um núcleo mais pesado. No entanto, eles descobriram que o elemento formado tinha cerca de metade da massa do urânio. Esse fato intrigou os pesquisadores, pois foi observado que um núcleo se dividiu em dois. A tecnologia nuclear tem como uma das principais finalidades gerar energia elétrica. Aproveitando-se do calor emitido na reação, para aquecer a água até se tornar vapor, assim movimentando uma turbina a vapor acoplada a um gerador. A reação nuclear pode acontecer controladamente em um reator de usina nuclear ou descontroladamente em uma bomba atômica (causando uma reação chamada reação em cadeia).
rdf:langString Kärnkraft eller atomkraft avser utvinning av energi ur atomkärnor, antingen genom att spjälka tunga atomkärnor (fission; framförallt uran) eller genom att slå ihop lätta atomkärnor (fusion; väte). Ordet förekommer i svenska media först 1968.
rdf:langString 核动力(英語:nuclear power,也稱原子能或核能)是利用可控核反应来获取能量,然后产生动力、热量和电能。该术语包括核裂变,核衰变和核聚变。产生核电的工厂被称作核电站,将核能转化为电能的装置包括反应堆和汽轮发电机。核能在反应堆中被转化为热能,热能将水变为蒸汽推动汽轮发电机组发电。 利用核反应来获取能量的原理是:当裂变材料(例如铀-235)在受人为控制的条件下发生核裂变时,核能就会以热的形式被释放出来,这些热量会被用来驱动蒸汽机。蒸汽机可以直接提供动力,也可以连接发电机来产生电能。世界各国军队中的某些潜艇及航空母舰以核能为动力(主要是美國)。 2020年全球电力有10.1%由核能发电提供。截至2021年7月,全球可运行的核电反应堆443座,总装机容量为394.2GWe。全球在建核电反应堆54座,总装机容量为61.2GWe。超过150艘使用核动力推进的舰船已被建造,由超过180个核反应堆提供动力。 核动力相關的重大事故包括三哩岛核泄漏事故(1979年)、切尔诺贝利核事故(1986年)、福岛第一核电站事故(2011年)和一些核动力潜艇事故。在各種能源的事故之中,按照每个单位发电的人命损失计算,核电的安全记录優于其他几种主要的发电方式。 国际上的核电动态方面,美國有近一半的核反应堆的证书被延长到60年,并且认真考虑建造十几个新核电站的计划。德国决定在2022年前关闭所有核电站,而意大利禁止核电站。继福岛之后,国际能源机构估计到2035年要减半新增加的核能发电能力。
rdf:langString Ядерная энергетика (Атомная энергетика) — отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии. Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер плутония-239 или урана-235. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло. Хотя в любой области энергетики первичным источником является ядерная энергия (например: энергия солнечных ядерных реакций, в гидроэлектростанциях, солнечных электростанциях и электростанциях, работающих на органическом топливе; энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах. Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; Россия осуществляет программу создания и испытания ядерного ракетного двигателя, США прекратили программу по созданию ядерного двигателя для космических кораблей, кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.
rdf:langString Я́дерна енерге́тика, або а́томна енерге́тика — галузь енергетики, що використовує ядерну енергію для електрифікації і теплофікації; галузь науки і техніки, що розробляє методи і засоби перетворення ядерної енергії в електричну і теплову. Перевагами ядерної енергетики перед енергетикою інших видів є велика теплотворна здатність ядерного палива (у 2 млн разів більша, ніж нафти, і в 3 млн разів більша, ніж вугілля), кращі економічні показники, менше забруднення довкілля. До того ж відпадає потреба використовувати кисень, якого на енергетичні потреби спалюється в 5 раз більше, ніж його споживають усі живі істоти. Крім того, запаси ядерного пального (якщо їх повністю використати) приблизно в 20 разів перевищують запаси органічного палива всіх видів.
xsd:nonNegativeInteger 208394

data from the linked data cloud