Neighbourhood (graph theory)
http://dbpedia.org/resource/Neighbourhood_(graph_theory) an entity of type: Object100002684
In der Graphentheorie versteht man unter der Nachbarschaft eines Knotens die Menge aller Knoten des Graphen, die mit ihm durch eine Kante verbunden sind. Oft wird eine Adjazenzmatrix benutzt, um die Nachbarschaftsbeziehung zwischen den Knoten eines Graphen darzustellen.
rdf:langString
En théorie des graphes on dit que deux sommets d'un graphe non-orienté sont voisins ou adjacents s'ils sont reliés par une arête. Le voisinage d'un sommet peut désigner l'ensemble de ses sommets voisins ou bien un sous-graphe associé, par exemple le sous-graphe induit. Dans un graphe orienté, on emploie généralement le terme de prédécesseur ou de successeur.
rdf:langString
في نظرية الرسومات، يقال عن رأس انه رأس مجاور (adjacent vertex) للرأس في إذا كان مرتبط بالرأس بواسطة ضلع. الجوار (neighbourhood) للرأس في الرسم هي رسم جزئي مولد بواسطة كل الرؤوس المجاورة لـ . بمعنى آخر، جوار الرأس هو الرسم المكون من الرؤوس المجاورة لهذا الرأس وجميع الأضلاع التي تربط الرؤوس المجاورة بـ . على سبيل المثال، بالصورة المرفقة هنا، الجوار للرأس يتكون من الرؤوس و و والضلع الذي يربط الرأسين و .
rdf:langString
En teoria de grafs, el veïnat d'un vèrtex v en un graf G és el de G format per tots els vèrtexs adjacents de v (és a dir, vèrtexs connectats a v per una aresta) i per totes les arestes que connecten dos d'aquests vèrtexs. Per exemple, la imatge mostra un graf de 6 vèrtexs i 7 arestes. El vèrtex 5 és adjacent als vèrtexs 1, 2 i 4, però no és adjacent a 3 ni a 6. El veïnat del vèrtex 5 és el graf amb tres vèrtexs (1, 2 i 4) i una aresta que connecta els vèrtexs 1 i 2.
rdf:langString
En teoría de grafos, un vértice adyacente de un vértice v en un grafo es un vértice que está conectado a v mediante una arista. La vecindad de un vértice v en un grafo G es el subgrafo inducido de G que está formado por todos los vértices adyacentes y todas las aristas que conectan dichos vértices. Por ejemplo, la imagen muestra un grafo de 6 vértices y 7 aristas. El vértice 5 es adyacente a los vértices 1, 2, y 4, pero no es adyacente a los vértices 3 y 6. La vecindad del vértice 5 es el grafo con 3 vértices, 1, 2, y 4, y una arista conectando los vértices 1 y 2.
rdf:langString
In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge. The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v. An isolated vertex has no adjacent vertices. The degree of a vertex is equal to the number of adjacent vertices. A special case is a loop that connects a vertex to itself; if such an edge exists, the vertex belongs to its own neighbourhood.
rdf:langString
В теории графов смежной вершиной вершины v называется вершина, соединённая с v ребром. Окрестностью вершины v в графе G называется порождённый подграф графа G, состоящий из всех вершин, сопряжённых v и всех рёбер, соединяющих две такие вершины. Например, рисунок показывает граф с 6 вершинами и 7 рёбрами. Вершина 5 смежна вершинам 1, 2 и 4, но не смежна вершинам 3 и 6. Окрестность вершины 5 — это граф с тремя вершинами 1, 2 и 4, и одним ребром, соединяющим вершины 1 и 2.
rdf:langString
Em teoria dos grafos, um vértice adjacente de um vértice v em um Grafo é um vértice que está ligado a v por uma aresta. A vizinhança ou adjacência de um vértice v em um grafo G é um subgrafo induzido de G constituído por todos os vértices adjacentes a v e todas as arestas ligando esses dois vértices. Por exemplo, a imagem mostra um gráfico de 6 vértices e 7 arestas. O vértice 5 é adjacente aos vértices 1, 2 e 4, mas não é adjacente aos vértices 3 e 6. A vizinhança do vértice 5 é o grafo com três vértices, 1, 2 e 4, e uma aresta conectando os vértices 1 e 2.
rdf:langString
В теорії графів суміжною вершиною вершини v називається вершина, поєднана з v ребром. Околом вершини v в графі G називається породжений підграф графа G, що складається з усіх вершин, сполучених з v і всіх ребер, що з'єднують дві таких вершини. Наприклад, малюнок показує граф з 6 вершинами і 7 ребрами. Вершина 5 суміжна вершинам 1, 2, і 4, але не суміжна вершинам 3 і 6. Окіл вершини 5 — це граф з трьома вершинами 1, 2, і 4, і одним ребром, що з'єднує вершини 1 і 2.
rdf:langString
rdf:langString
الجوار (نظرية الرسومات)
rdf:langString
Veïnat (teoria de grafs)
rdf:langString
Nachbarschaft (Graphentheorie)
rdf:langString
Vecindad (teoría de grafos)
rdf:langString
Voisinage (théorie des graphes)
rdf:langString
Neighbourhood (graph theory)
rdf:langString
Окрестность (теория графов)
rdf:langString
Vizinhança (teoria dos grafos)
rdf:langString
Окіл (теорія графів)
xsd:integer
7309251
xsd:integer
1123091636
rdf:langString
في نظرية الرسومات، يقال عن رأس انه رأس مجاور (adjacent vertex) للرأس في إذا كان مرتبط بالرأس بواسطة ضلع. الجوار (neighbourhood) للرأس في الرسم هي رسم جزئي مولد بواسطة كل الرؤوس المجاورة لـ . بمعنى آخر، جوار الرأس هو الرسم المكون من الرؤوس المجاورة لهذا الرأس وجميع الأضلاع التي تربط الرؤوس المجاورة بـ . على سبيل المثال، بالصورة المرفقة هنا، الجوار للرأس يتكون من الرؤوس و و والضلع الذي يربط الرأسين و . في اغلب الحالات يستخدم الرمز أو للرمز لمجموعة الجوار للرأس في الرسم . هذه المجموعه لاتشمل الرأس نفسه فبتالي يمكن تسميتها أيضا بمجموعة الجوار المفتوحة (open neighbourhood) للرأس . يوجد مجموعه جوار أخرى تسمى بالجوار المغلقه (closed neighbourhood) والتي تحتوي على الرأسويرمز لهذه المجموعه بالرمز . فيما يلي عند ذكر مصطلح جوار بدون تحديد فنعني بذلك المفتوحه. من الممكن استخدام مفهوم الجوارات لتمثيل الرسومات في خوارزميه حاسوبيه من خلال قائمة الجوار ومصفوفة الجوار الممثله لهذه الرسومات. يستخدم مصطلح الجوارات ايضاً في معامل التجميع (clustering coefficien ) لرسم ما والذي يهتم بقياس متوسط كثافة التجاور لهذا الرسم. بالإضافة إلى ذلك من الممكن تعريف تصنيفات مهمه للرسومات بناء على خواص التجاور لها أو بالتماثل والتي تربط كل جوار بالآخر. يٌسمى الرأس الذي ليس له رؤوس مجاوره بالرأس المنعزل (isolated vertex). درجة رأس ما تساوي عدد الرؤوس المجاورة لهذا الرأس. في حالة كان الرأس مجاور لنفسه فإنه يسمى بـ عروه (loop). في حالة وجود عروه لرأس ما فإن هذا الرأس ينتمي لمجموعة التجاور لنفسه.
rdf:langString
En teoria de grafs, el veïnat d'un vèrtex v en un graf G és el de G format per tots els vèrtexs adjacents de v (és a dir, vèrtexs connectats a v per una aresta) i per totes les arestes que connecten dos d'aquests vèrtexs. Per exemple, la imatge mostra un graf de 6 vèrtexs i 7 arestes. El vèrtex 5 és adjacent als vèrtexs 1, 2 i 4, però no és adjacent a 3 ni a 6. El veïnat del vèrtex 5 és el graf amb tres vèrtexs (1, 2 i 4) i una aresta que connecta els vèrtexs 1 i 2. El veïnat es denota sovint com NG(v), o simplement N(v) quan el graf no és ambigu. De vegades també s'utilitza aquesta notació per referir-se al conjunt de vèrtexs adjacents en lloc del corresponent subgraf induït. El veïnat descrit anteriorment no inclou el propi v, i és més específicament el veïnat obert' de v; també és possible definir un veïnat en el qual s'inclogui v, anomenat el veïnat tancat i denotat per NG[v]. Quan es fa referència al veïnat sense cap qualificació, s'assumeix que es tracta d'un veïnat obert. Els veïnats es poden utilitzar per representar grafs en algoritmes informàtics, a través de les representacions i matriu d'adjacència. Els veïnats també s'utilitzen en el d'un graf, que és una mesura de la densitat mitjana dels seus veïnats. A més, moltes classes importants de grafs es poden definir a través de les propietats dels seus veïnats, o per simetries que relacionen veïnats entre ells. Un vèrtex aïllat no té vèrtexs adjacents. El grau d'un vèrtex és igual al nombre de vèrtexs adjacents. Un cas especial és un bucle que connecta un vèrtex amb si mateix; si existeix una aresta d'aquest tipus, llavors el vèrtex pertany al seu propi veïnat.
rdf:langString
In der Graphentheorie versteht man unter der Nachbarschaft eines Knotens die Menge aller Knoten des Graphen, die mit ihm durch eine Kante verbunden sind. Oft wird eine Adjazenzmatrix benutzt, um die Nachbarschaftsbeziehung zwischen den Knoten eines Graphen darzustellen.
rdf:langString
En teoría de grafos, un vértice adyacente de un vértice v en un grafo es un vértice que está conectado a v mediante una arista. La vecindad de un vértice v en un grafo G es el subgrafo inducido de G que está formado por todos los vértices adyacentes y todas las aristas que conectan dichos vértices. Por ejemplo, la imagen muestra un grafo de 6 vértices y 7 aristas. El vértice 5 es adyacente a los vértices 1, 2, y 4, pero no es adyacente a los vértices 3 y 6. La vecindad del vértice 5 es el grafo con 3 vértices, 1, 2, y 4, y una arista conectando los vértices 1 y 2. La vecindad es frecuentemente denotada NG(v) o (cuando el grafo no es ambiguo) N(v). La misma notación también puede referirse a los conjuntos de vértices adyacentes en lugar de al correspondiente subgrafo. La vecindad descrita anteriormente no incluye al mismo v, y es más específico referirse como la vecindad abierta de v; también es posible definir una vecindad donde v este incluido, llamada la vecindad cerrada y denotada por NG[v]. Cuando aparece sin especificar, la vecindad se presume abierta.
rdf:langString
En théorie des graphes on dit que deux sommets d'un graphe non-orienté sont voisins ou adjacents s'ils sont reliés par une arête. Le voisinage d'un sommet peut désigner l'ensemble de ses sommets voisins ou bien un sous-graphe associé, par exemple le sous-graphe induit. Dans un graphe orienté, on emploie généralement le terme de prédécesseur ou de successeur.
rdf:langString
In graph theory, an adjacent vertex of a vertex v in a graph is a vertex that is connected to v by an edge. The neighbourhood of a vertex v in a graph G is the subgraph of G induced by all vertices adjacent to v, i.e., the graph composed of the vertices adjacent to v and all edges connecting vertices adjacent to v. The neighbourhood is often denoted or (when the graph is unambiguous) . The same neighbourhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced subgraphs. The neighbourhood described above does not include v itself, and is more specifically the open neighbourhood of v; it is also possible to define a neighbourhood in which v itself is included, called the closed neighbourhood and denoted by . When stated without any qualification, a neighbourhood is assumed to be open. Neighbourhoods may be used to represent graphs in computer algorithms, via the adjacency list and adjacency matrix representations. Neighbourhoods are also used in the clustering coefficient of a graph, which is a measure of the average density of its neighbourhoods. In addition, many important classes of graphs may be defined by properties of their neighbourhoods, or by symmetries that relate neighbourhoods to each other. An isolated vertex has no adjacent vertices. The degree of a vertex is equal to the number of adjacent vertices. A special case is a loop that connects a vertex to itself; if such an edge exists, the vertex belongs to its own neighbourhood.
rdf:langString
В теории графов смежной вершиной вершины v называется вершина, соединённая с v ребром. Окрестностью вершины v в графе G называется порождённый подграф графа G, состоящий из всех вершин, сопряжённых v и всех рёбер, соединяющих две такие вершины. Например, рисунок показывает граф с 6 вершинами и 7 рёбрами. Вершина 5 смежна вершинам 1, 2 и 4, но не смежна вершинам 3 и 6. Окрестность вершины 5 — это граф с тремя вершинами 1, 2 и 4, и одним ребром, соединяющим вершины 1 и 2. Окрестность часто обозначается как NG(v) или (если известно, о каком графе идёт речь) N(v). То же самое обозначение окрестности может использоваться для ссылки на множество смежных вершин, а не на соответствующий порождённый подграф. Окрестность, описанная выше, не включает саму вершину v и об этой окрестности говорят как об открытой окрестности вершины v. Можно определить окрестность, включающую v. В этом случае окрестность называется закрытой и обозначается как NG[v]. Если не указано явно, окрестность предполагается открытой. Окрестности можно использовать для представления графов в компьютерных алгоритмах через список смежности и матрицу смежности. Окрестности используются также в графа, который измеряет среднюю плотность его окрестностей. Вдобавок, много важных классов графов можно определить свойствами его окрестностей или взаимной симметрией окрестностей. Изолированная вершина не имеет смежных вершин. Степень вершины равна числу смежных вершин. Специальным случаем является петля, соединяющая вершину с той же самой вершиной. Если такое ребро существует, вершина принадлежит собственной окрестности.
rdf:langString
Em teoria dos grafos, um vértice adjacente de um vértice v em um Grafo é um vértice que está ligado a v por uma aresta. A vizinhança ou adjacência de um vértice v em um grafo G é um subgrafo induzido de G constituído por todos os vértices adjacentes a v e todas as arestas ligando esses dois vértices. Por exemplo, a imagem mostra um gráfico de 6 vértices e 7 arestas. O vértice 5 é adjacente aos vértices 1, 2 e 4, mas não é adjacente aos vértices 3 e 6. A vizinhança do vértice 5 é o grafo com três vértices, 1, 2 e 4, e uma aresta conectando os vértices 1 e 2. A vizinhança é frequentemente denotada NG(v) ou (quando o grafo não é ambíguo) N(v). A mesma notação de vizinhança também pode ser usada para se referir a um conjunto de vértices adjacentes ao invés dos subgrafos induzidos correspondentes. A adjacência descrita acima não inclui v em si, e mais especificamente, a vizinhança aberta de v; também é possível definir uma adjacência na qual v está incluído, chamada de vizinhança fechada e denotada por NG[v]. Quando não se afirma nada, a vizinhança é considerada aberta. Vizinhanças podem ser usadas para representar grafos em algoritmos de computador, através da representações de lista de adjacência e matriz de adjacência . Vizinhanças também são usadas no coeficiente de agrupamento de um grafo, que é uma medida da densidade média de suas adjacências. Além disso, muitas classes importantes de grafos podem ser definidas pelas propriedades de suas vizinhanças, ou por simetrias que relacionam vizinhanças umas com as outras. Um vértice isolado não tem vértices adjacentes. O grau de um vértice é igual ao número de vértices adjacentes. Um caso especial é um laço que une um vértice a ele próprio; se tal aresta existe, o vértice pertence à sua própria vizinhança.
rdf:langString
В теорії графів суміжною вершиною вершини v називається вершина, поєднана з v ребром. Околом вершини v в графі G називається породжений підграф графа G, що складається з усіх вершин, сполучених з v і всіх ребер, що з'єднують дві таких вершини. Наприклад, малюнок показує граф з 6 вершинами і 7 ребрами. Вершина 5 суміжна вершинам 1, 2, і 4, але не суміжна вершинам 3 і 6. Окіл вершини 5 — це граф з трьома вершинами 1, 2, і 4, і одним ребром, що з'єднує вершини 1 і 2. Окіл часто позначається як NG(v) або (якщо відомо, про який граф йде мова) N(v). Те ж саме позначення околу може використовуватися для посилання на множину суміжних вершин, а не на відповідний породжений підграф. Окіл, описаний вище не включає саму вершину v і про цей окіл говорять як про відкритий окіл вершини v. Можна визначити окіл, що включає v. У цьому випадку окіл називається замкненим та позначається як NG[v]. Якщо не вказано явно, то окіл є відкритим. Околи можна використовувати для представлення графів в комп'ютерних алгоритмах через та матрицю суміжності. Околи використовуються також в коефіцієнті кластеризації графа, який вимірює середню густину його околів. До того ж, багато важливих класів графів можна визначити властивостями його околи або взаємною симетрією околів. Ізольована вершина не має суміжних вершин. Степінь вершини дорівнює числу суміжних вершин. Спеціальним випадком є петля, що з'єднує вершину з тією ж самою вершиною. Якщо таке ребро існує, вершина належить власному околу.
xsd:nonNegativeInteger
9098