Least absolute deviations

http://dbpedia.org/resource/Least_absolute_deviations

Die Methode der kleinsten absoluten Abweichungen, auch Median-Regression, stellt ein robustes Schätzverfahren dar, um unbekannte Parameter einer linearen Regression zu schätzen. Solch ein Schätzer wird Kleinste-Absolute-Abweichungen-Schätzer (engl. least absolute deviations estimator, LAD) genannt. Er minimiert die Summe des Medians der absoluten Abweichungen. rdf:langString
Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based minimizing the sum of absolute deviations (sum of absolute residuals or sum of absolute errors) or the L1 norm of such values. It is analogous to the least squares technique, except that it is based on absolute values instead of squared values. It attempts to find a function which closely approximates a set of data by minimizing residuals between points generated by the function and corresponding data points. The LAD estimate also arises as the maximum likelihood estimate if the errors have a Laplace distribution. It was introduced in 1757 by Roger Joseph Boscovich. rdf:langString
Las Mínimas desviaciones absolutas (LAD, por sus siglas en inglés), también conocidas como Mínimos Errores Absolutos (LAE), es una técnica de optimización técnica similar a los de mínimos cuadrados ordinarios que intenta encontrar una función que se aproxima mucho a un conjunto de datos. En el caso simple de un conjunto de datos (x, y) , la función de aproximación es una simple "línea de tendencia" en dos dimensiones de coordenadas cartesianas. El método minimiza la suma de errores absolutos (SAE) (la suma de los valores absolutos de los "residuos" verticales entre puntos generados por la función y los puntos correspondientes en los datos). La estimación de desviaciones mínimas absolutas también surge como la estimación de máxima verosimilitud si los errores tienen una distribución de Lapl rdf:langString
Метод наименьших модулей (МНМ) — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки. МНМ применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. МНМ похож на метод наименьших квадратов. Отличие состоит в минимизации не суммы квадратов невязок, а (взвешенной) суммы их абсолютных значений (Расстояние городских кварталов). * rdf:langString
rdf:langString Median-Regression
rdf:langString Mínimas desviaciones absolutas
rdf:langString Least absolute deviations
rdf:langString Метод наименьших модулей
xsd:integer 19048902
xsd:integer 1120365293
rdf:langString Die Methode der kleinsten absoluten Abweichungen, auch Median-Regression, stellt ein robustes Schätzverfahren dar, um unbekannte Parameter einer linearen Regression zu schätzen. Solch ein Schätzer wird Kleinste-Absolute-Abweichungen-Schätzer (engl. least absolute deviations estimator, LAD) genannt. Er minimiert die Summe des Medians der absoluten Abweichungen.
rdf:langString Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based minimizing the sum of absolute deviations (sum of absolute residuals or sum of absolute errors) or the L1 norm of such values. It is analogous to the least squares technique, except that it is based on absolute values instead of squared values. It attempts to find a function which closely approximates a set of data by minimizing residuals between points generated by the function and corresponding data points. The LAD estimate also arises as the maximum likelihood estimate if the errors have a Laplace distribution. It was introduced in 1757 by Roger Joseph Boscovich.
rdf:langString Las Mínimas desviaciones absolutas (LAD, por sus siglas en inglés), también conocidas como Mínimos Errores Absolutos (LAE), es una técnica de optimización técnica similar a los de mínimos cuadrados ordinarios que intenta encontrar una función que se aproxima mucho a un conjunto de datos. En el caso simple de un conjunto de datos (x, y) , la función de aproximación es una simple "línea de tendencia" en dos dimensiones de coordenadas cartesianas. El método minimiza la suma de errores absolutos (SAE) (la suma de los valores absolutos de los "residuos" verticales entre puntos generados por la función y los puntos correspondientes en los datos). La estimación de desviaciones mínimas absolutas también surge como la estimación de máxima verosimilitud si los errores tienen una distribución de Laplace.
rdf:langString Метод наименьших модулей (МНМ) — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки. МНМ применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. МНМ похож на метод наименьших квадратов. Отличие состоит в минимизации не суммы квадратов невязок, а (взвешенной) суммы их абсолютных значений (Расстояние городских кварталов). * Этот метод обеспечивает максимум функции правдоподобия, если ошибки измерений подчиняются закону Лапласа. (Для сравнения, метод наименьших квадратов обеспечивает максимум функции правдоподобия, когда ошибки распределены по Гауссу.)
xsd:nonNegativeInteger 16010

data from the linked data cloud