Least absolute deviations
http://dbpedia.org/resource/Least_absolute_deviations
Die Methode der kleinsten absoluten Abweichungen, auch Median-Regression, stellt ein robustes Schätzverfahren dar, um unbekannte Parameter einer linearen Regression zu schätzen. Solch ein Schätzer wird Kleinste-Absolute-Abweichungen-Schätzer (engl. least absolute deviations estimator, LAD) genannt. Er minimiert die Summe des Medians der absoluten Abweichungen.
rdf:langString
Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based minimizing the sum of absolute deviations (sum of absolute residuals or sum of absolute errors) or the L1 norm of such values. It is analogous to the least squares technique, except that it is based on absolute values instead of squared values. It attempts to find a function which closely approximates a set of data by minimizing residuals between points generated by the function and corresponding data points. The LAD estimate also arises as the maximum likelihood estimate if the errors have a Laplace distribution. It was introduced in 1757 by Roger Joseph Boscovich.
rdf:langString
Las Mínimas desviaciones absolutas (LAD, por sus siglas en inglés), también conocidas como Mínimos Errores Absolutos (LAE), es una técnica de optimización técnica similar a los de mínimos cuadrados ordinarios que intenta encontrar una función que se aproxima mucho a un conjunto de datos. En el caso simple de un conjunto de datos (x, y) , la función de aproximación es una simple "línea de tendencia" en dos dimensiones de coordenadas cartesianas. El método minimiza la suma de errores absolutos (SAE) (la suma de los valores absolutos de los "residuos" verticales entre puntos generados por la función y los puntos correspondientes en los datos). La estimación de desviaciones mínimas absolutas también surge como la estimación de máxima verosimilitud si los errores tienen una distribución de Lapl
rdf:langString
Метод наименьших модулей (МНМ) — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки. МНМ применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. МНМ похож на метод наименьших квадратов. Отличие состоит в минимизации не суммы квадратов невязок, а (взвешенной) суммы их абсолютных значений (Расстояние городских кварталов).
*
rdf:langString
rdf:langString
Median-Regression
rdf:langString
Mínimas desviaciones absolutas
rdf:langString
Least absolute deviations
rdf:langString
Метод наименьших модулей
xsd:integer
19048902
xsd:integer
1120365293
rdf:langString
Die Methode der kleinsten absoluten Abweichungen, auch Median-Regression, stellt ein robustes Schätzverfahren dar, um unbekannte Parameter einer linearen Regression zu schätzen. Solch ein Schätzer wird Kleinste-Absolute-Abweichungen-Schätzer (engl. least absolute deviations estimator, LAD) genannt. Er minimiert die Summe des Medians der absoluten Abweichungen.
rdf:langString
Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based minimizing the sum of absolute deviations (sum of absolute residuals or sum of absolute errors) or the L1 norm of such values. It is analogous to the least squares technique, except that it is based on absolute values instead of squared values. It attempts to find a function which closely approximates a set of data by minimizing residuals between points generated by the function and corresponding data points. The LAD estimate also arises as the maximum likelihood estimate if the errors have a Laplace distribution. It was introduced in 1757 by Roger Joseph Boscovich.
rdf:langString
Las Mínimas desviaciones absolutas (LAD, por sus siglas en inglés), también conocidas como Mínimos Errores Absolutos (LAE), es una técnica de optimización técnica similar a los de mínimos cuadrados ordinarios que intenta encontrar una función que se aproxima mucho a un conjunto de datos. En el caso simple de un conjunto de datos (x, y) , la función de aproximación es una simple "línea de tendencia" en dos dimensiones de coordenadas cartesianas. El método minimiza la suma de errores absolutos (SAE) (la suma de los valores absolutos de los "residuos" verticales entre puntos generados por la función y los puntos correspondientes en los datos). La estimación de desviaciones mínimas absolutas también surge como la estimación de máxima verosimilitud si los errores tienen una distribución de Laplace.
rdf:langString
Метод наименьших модулей (МНМ) — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки. МНМ применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. МНМ похож на метод наименьших квадратов. Отличие состоит в минимизации не суммы квадратов невязок, а (взвешенной) суммы их абсолютных значений (Расстояние городских кварталов).
* Этот метод обеспечивает максимум функции правдоподобия, если ошибки измерений подчиняются закону Лапласа. (Для сравнения, метод наименьших квадратов обеспечивает максимум функции правдоподобия, когда ошибки распределены по Гауссу.)
xsd:nonNegativeInteger
16010