Hydrogen atom

http://dbpedia.org/resource/Hydrogen_atom an entity of type: Thing

水素原子(すいそげんし、(英: Hydrogen atom)は、水素の原子である。1つの陽子と1つの電子により構成されている。水素原子は宇宙の全質量の約75%を占める。 水素は地球上では他の原子との化合物(例えば、水)を作るか、水素分子(H2)の状態で存在していることが多く、単に水素と言えば一般的には水素分子のことを指す。 電気分解などにより単離した水素原子や、酸素や窒素などと結びついた水素原子は、反応性が高く、その還元作用のため活性水素 (Active hydrogen) と呼ばれる。 rdf:langString
Een waterstofatoom is een atoom van het chemische element waterstof. Het elektrisch neutrale atoom bevat een positief geladen proton en een negatief geladen elektron, dat aan de kern wordt gebonden door de coulombkracht. De meest voorkomende isotoop, protium (ook waterstof-1 of lichte waterstof genoemd), bevat geen neutronen; andere isotopen van waterstof, zoals deuterium en tritium, bevatten respectievelijk een en twee neutronen. rdf:langString
Väteatomen är ett av få system för vilket det finns en exakt kvantmekanisk beskrivning. Systemet består av två laddade partiklar, den positivt laddade atomkärnan och en negativt laddad elektron. Lösningarna för väteatomen och vätelika system ligger till grund för mycket av vår kunskap och teori om atomer och molekyler samt även hur det periodiska systemet är uppbyggt. rdf:langString
А́том во́дню (Гідроген) — найпростіший з атомів хімічних елементів. Він складається з позитивно зарядженого ядра, яке для основного ізотопа є просто протоном, й одного електрона. Квантовомеханічна задача про дозволені енергетичні стани атома водню розв'язується точно. Зважаючи на цю обставину, хвильові функції, отримані як власні функції цієї задачі, є базовими для розгляду решти елементів періодичної таблиці. Тому спектр атома водню має велике значення для фізики й хімії. rdf:langString
氫原子是氫元素的原子。電中性的原子含有一個正價的質子與一個負價的電子,被庫侖定律束縛於原子核內。在大自然中,氫原子是豐度最高的同位素,稱為氫,氫-1 ,或氕。氫原子不含任何中子,別的氫同位素含有一個或多個中子。這條目主要描述氫-1 。 氫原子擁有一個質子和一個電子,是一個的簡單的二體系統。系統內的作用力只跟二體之間的距離有關,是反平方連心力,不需要將這反平方連心力二體系統再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。因此可以這樣說,在量子力學裏,沒有比氫原子問題更簡單,更實用,而又有解析解的問題了。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,氫原子問題是個很重要的問題。 另外,理論上薛丁格方程式也可用於求解更複雜的原子與分子。但在大多數的案例中,皆無法獲得解析解,而必須藉用電腦(計算機)來進行計算與模擬,或者做一些簡化的假設,方能求得問題的解析解。 rdf:langString
ذرة الهيدروجين هي أبسط الذرات لأول عنصر في الجدول الدوري للعناصر الكيميائية.فهي تتكون من بروتون يشكل النواة وإلكترون واحد. نقتصر هنا على النظير الأكثر وفرة بطبيعة الحال. يكون الهيدروجين الذري نحو 90% من كتلة العناصر في الكون. (لا تتكون معظم كتلة المادة في الكون من العناصر الكيميائية أو الكتلة الباريونية، وإنما من المادة المظلمة بالإضافة إلى طاقة مظلمة). أو أو ، وهكذا. وظهر ثابت بلانك h كثابت طبيعي هام على المستوى الصغري، وبأنه العامل الرئيسي في كيفية سلوك المادة في المستوى الصغري، مستوى الذرات وما دونها. هو تردد شعاع الضوء. rdf:langString
Ein Wasserstoffatom ist ein Atom des chemischen Elements Wasserstoff (Symbol: H).Das Atom besteht aus einem einfach positiv geladenen Atomkern (mit einem Proton und bei natürlich vorkommenden Isotopen null bis zwei Neutronen) und einem negativ geladenen Elektron. Elektron und Atomkern sind aufgrund ihrer entgegengesetzten elektrischen Ladung aneinander gebunden (Coulombsches Gesetz). rdf:langString
A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe. rdf:langString
El átomo de hidrógeno es el átomo más simple que existe y el único que admite una solución analítica exacta desde el punto de vista de la mecánica cuántica. El átomo de hidrógeno es conocido también como átomo monoelectrónico, debido a que está formado por un protón que se encuentra en el núcleo del átomo y que contiene más del 99,945 % de la masa del átomo, y un solo electrón -unas 1836 veces menos masivo que el protón- que "orbita" alrededor de dicho núcleo (aunque también pueden existir átomos de hidrógeno con núcleos formados por un protón y 1 o 2 neutrones más, llamados deuterio y tritio, respectivamente). rdf:langString
L'atome d'hydrogène est le plus simple de tous les atomes du tableau périodique, étant composé d'un proton et d'un électron. Il correspond au premier élément de la classification périodique. La compréhension des interactions au sein de cet atome au moyen de la théorie quantique fut une étape importante qui a notamment permis de développer la théorie des atomes à N électrons. C'est pour comprendre la nature de son spectre d'émission, discret, alors que la théorie classique prévoyait un spectre continu, que Niels Bohr a introduit en 1913 un premier modèle quantique de l'atome (cf. atome de Bohr). L'approfondissement de son étude a permis de valider les théories de la physique quantique au fur et à mesure des progrès accomplis : d'abord l'ancienne théorie des quanta, ensuite la mécanique quan rdf:langString
Atom hidrogen ialah atom yang berasal dari unsur kimia hidrogen. Muatan netral atom berisi satu proton bermuatan positif dan elektron bermuatan negatif yang terikat kepada nukleus oleh Hukum Coulomb. Atom hidrogen terdiri dari sekitar 75 % di alam semesta. Dalam kehidupan sehari-hari di Bumi, atom-atom hidrogen yang terisolasi (biasanya disebut "atom hidrogen") sangat jarang adanya. Sebaliknya, hidrogen cenderung untuk menggabungkan dengan atom lain dalam senyawa, atau dengan dirinya sendiri untuk membentuk gas hidrogen biasa, H2. Dalam Bahasa Inggris, penggunaan perkataan "atomic hydrogen" dan "hydrogen atom," biasanya mempunyai makna yang tumpang tindih. Sebagai contoh, sebuah molekul air mengandung dua atom hidrogen, tetapi tidak berisi atom yang mengandung hidrogen (yang mengarah terha rdf:langString
In meccanica quantistica l'atomo di idrogeno è uno dei più semplici sistemi studiabili in 3 dimensioni, poiché possiede un nucleo con un protone e ha un solo elettrone. È il tipico esempio di moto in campo a simmetria centrale, ed il sistema gode di notevoli proprietà di simmetria. rdf:langString
А́том водоро́да — физико-химическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра, как правило, входит протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон образует электронную оболочку; наибольшая вероятность обнаружения электрона в единичном объёме наблюдается для центра атома. Интегрирование по сферическому слою показывает, что наибольшая вероятность обнаружения электрона в единичном слое соответствует среднему радиусу, равному боровскому радиусу ангстрема. rdf:langString
rdf:langString ذرة الهيدروجين
rdf:langString Wasserstoffatom
rdf:langString Átomo de hidrógeno
rdf:langString Hydrogen atom
rdf:langString Atom hidrogen
rdf:langString Atome d'hydrogène
rdf:langString Atomo di idrogeno
rdf:langString 水素原子
rdf:langString Waterstofatoom
rdf:langString Атом водорода
rdf:langString Väteatomen
rdf:langString Спектр атома водню
rdf:langString 氫原子
xsd:integer 14225
xsd:integer 1117753566
rdf:langString Stable
rdf:langString protium
xsd:double 1.007825
rdf:langString H
rdf:langString ذرة الهيدروجين هي أبسط الذرات لأول عنصر في الجدول الدوري للعناصر الكيميائية.فهي تتكون من بروتون يشكل النواة وإلكترون واحد. نقتصر هنا على النظير الأكثر وفرة بطبيعة الحال. يكون الهيدروجين الذري نحو 90% من كتلة العناصر في الكون. (لا تتكون معظم كتلة المادة في الكون من العناصر الكيميائية أو الكتلة الباريونية، وإنما من المادة المظلمة بالإضافة إلى طاقة مظلمة). سوف تكون ذرة الهيدروجين هي الوحيدة في الاعتبار هنا إلا في حالة الاستثناء. فنواة النظير الديوتيريوم تتكون من بروتون ونيوترون، والنظير التريتيوم (وهو مشع) تتكون من بروتون ونيوترونين. تأثير هذه النويات الإضافية منخفض نسبيا لأن البوتون هو الذي يشكل الجهد المركزي الذي يقع تأثيره الإلكترون في الذرة. البروتون أكبر كتلة 1838 مرة من الإلكترون، وله شحنة أساسية موجبة. أما الإلكترون فهو أخف كثيرا من البروتون وله شحنة أساسية سالبة. شحنة البروتون وشحنة الإلكترون متساويتان في القيمة (شحنة أساسية) ولكنهما معكوستان، البروتون ذو شحنة أساسية موجبة والإلكترون ذو شحنة أساسية سالبة. لم يكن من السهل على العلماء في البداية تفسير ما يقومون بقياسه من طيف انبعاث للمادة. حيث تظهر خطوط الطيف منفصلة عن بعضها البعض، وطبقا للميكانيكا الكلاسيكية فكانت تتنبأ بطيف مستمر متواصل. علاوة على ذلك، فلا تعطي الميكانيكا الكلاسيكية تفسيرا لعدم «وقوع» الإلكترون السالب الشحنة على النواة الذرية الموجبة الشحنة. فالواقع في الطبيعة أن الإلكترون في ذرة الهيدروجين (وكذلك في الذرات الأخرى) يدور في مدارات حول لنواة ولا يقع عليها. فكان لزاما أن يبحث العلماء عن أسباب ذلك، وأن يقوموا بتفسير سلوك الإلكترون في غلاف الذرات. توصل ماكس بلانك إلى نظرية الكم عام 1900، وتبين منها أن طاقة الإلكترون في الذرة تتخذ قيما محددة، تلك المقادير من الطاقة لا تزداد مستمرا ومتواصلا ولكنها تزيد في هيئة «وحدات» صغيرة من الطاقة. وبين بلانك بدراسته لإشعاع الجسم الأسود أن الإلكترون يمكن أن تزداد طاقته بامتصاص فوتون (شعاع ضوء) (أو تنخفض طاقته بإصدار شعاع ضوء) فلى النحو التالي: أو أو ، وهكذا. وظهر ثابت بلانك h كثابت طبيعي هام على المستوى الصغري، وبأنه العامل الرئيسي في كيفية سلوك المادة في المستوى الصغري، مستوى الذرات وما دونها. هو تردد شعاع الضوء. قدم الفيزيائي الدنماركي نيلز بور سنة 1913 أول نموذج كمومي للذرة، (انظر نموذج بور). مبني على نظرية الكم، وطبقا لنموذجه أن الإلكترون في ذرة الهيدروجين يمكنه التواجد في مستوات مختلفة من الطاقة من دون أن «يقع» على النواة. بالإضافة إلى ذلك: يمكن للإلكترون الانتقال من مستوى طاقة (في الذرة) سفلي إلى مستوى طاقة أعلى عن طريق امتصاص «كما» معينا من الطاقة محكوما بوحدة الشغل h (ثابت بلانك)، وعندما يقفز من مستوى طاقة عالي إلى مستوى منخفض فهو يصدر «كما» مساويا لفرق الطاقتين في هيئة فوتون أي شعاع ضوء، تبلغ طاقته ، حيث هو تردد شعاع الضوء. بناء على ذلك طور الفزيائيون طرق حساباتهم وتوصلوا إلى ميكانيكا الكم التي تسمح للإلكترون بالبقاء في مدار حول النواة من دون إن يسقط عليها. ليس هذا فقط بل أستطاع كل من هايزنبرج الألماني عام 1923 من ابتكار ميكانيكا الكم وقام بها بتفسير سلوك الإلكترون في ذرة الهيدوجين، وتفسير خطوط طيف الهيدروجين وحسابها تماما. في عام 1924 استطاع أيضا الفيزيائي النمساوي شرودنجر ابتكار وهي تنتسب إلى ميكانيكا الكم، ولكنها أسهل في طريقة حلها المسائل الفيزيائية، وعم تطبيقها بين الفيزيائيين. واستطاع الفزيائيون استخدامها لتفسير خصائح متعددة في المستوى الذري. أصبحت ميكانيكا الكم هي الوسيلة لتفسير ووصف الظواهر الطبيعية في الحيز الصغري، هكذا تتصرف طبيعة المادة. وقام بتطويرها العلماء للطبيق على أنظمة أخرى غير ذرة الهيدروجين ونجحت تماما في تفسيرها نجاحا كبيرا. وتطورت إلى ميكانيكا الكم النسبية لديراك التي تدخل النظرية النسبية الخاصة لأينشتاين في صياغتها، وأخيرا نظرية الحقل الكمومي. في سياق ميكانيكا الكم، ذرة الهيدروجين هي مسألة جسمين يتآثران ببعضهما البعض وقابلة للحل، على الأقل إذا اقتصرنا على حالة غير نسبية لهاميلتوني حيث يُأخد في الحسبان فقط التآثر الكولومبي (الكهربي) بين الإلكترون والبروتون، مع اعتبارهم جسمين نقطيين. وبالتالي فمن الممكن استنتاج مستويات الطاقة لهذا النظام، ومقارنة نتائج الحسابات ب خطوط الطيف الذي يصدر من النظام. الدراسة النظرية لذرة الهيدروجين لديها أهمية كبيرة في الفيزياء الذرية والفيزياء الجزيئية، في واقع الأمر، ليس فقط من أجل فهم أطياف الانبعاث للأيونات، المسماة الهيدروجينيات، أي إهمال الإلكترونات في الأغلفة التحتية في الذرة ودراسة تآثر إلكترون منفرد مع هذا الكيان.
rdf:langString Ein Wasserstoffatom ist ein Atom des chemischen Elements Wasserstoff (Symbol: H).Das Atom besteht aus einem einfach positiv geladenen Atomkern (mit einem Proton und bei natürlich vorkommenden Isotopen null bis zwei Neutronen) und einem negativ geladenen Elektron. Elektron und Atomkern sind aufgrund ihrer entgegengesetzten elektrischen Ladung aneinander gebunden (Coulombsches Gesetz). Das Wasserstoffatom ist das am einfachsten aufgebaute aller Atome und bietet den Schlüssel zum Verständnis des Aufbaus und der Eigenschaften aller Atome. Es ist das einzige Atom, für das die quantenmechanische Schrödinger-Gleichung analytisch, d. h. in mathematisch geschlossener Form, gelöst werden kann. Die Spektrallinien des Wasserstoffatoms sind mit hoher Genauigkeit berechenbar und können mit den gemessenen Werten verglichen werden, wie z. B. das bekannteste Linienmultiplett, die Balmer-Serie.
rdf:langString A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe. In everyday life on Earth, isolated hydrogen atoms (called "atomic hydrogen") are extremely rare. Instead, a hydrogen atom tends to combine with other atoms in compounds, or with another hydrogen atom to form ordinary (diatomic) hydrogen gas, H2. "Atomic hydrogen" and "hydrogen atom" in ordinary English use have overlapping, yet distinct, meanings. For example, a water molecule contains two hydrogen atoms, but does not contain atomic hydrogen (which would refer to isolated hydrogen atoms). Atomic spectroscopy shows that there is a discrete infinite set of states in which a hydrogen (or any) atom can exist, contrary to the predictions of classical physics. Attempts to develop a theoretical understanding of the states of the hydrogen atom have been important to the history of quantum mechanics, since all other atoms can be roughly understood by knowing in detail about this simplest atomic structure.
rdf:langString L'atome d'hydrogène est le plus simple de tous les atomes du tableau périodique, étant composé d'un proton et d'un électron. Il correspond au premier élément de la classification périodique. La compréhension des interactions au sein de cet atome au moyen de la théorie quantique fut une étape importante qui a notamment permis de développer la théorie des atomes à N électrons. C'est pour comprendre la nature de son spectre d'émission, discret, alors que la théorie classique prévoyait un spectre continu, que Niels Bohr a introduit en 1913 un premier modèle quantique de l'atome (cf. atome de Bohr). L'approfondissement de son étude a permis de valider les théories de la physique quantique au fur et à mesure des progrès accomplis : d'abord l'ancienne théorie des quanta, ensuite la mécanique quantique non relativiste de Schrödinger, la mécanique quantique relativiste de Dirac, et enfin la théorie quantique des champs. Dans le cadre de la mécanique quantique, l'atome d'hydrogène est un problème à deux corps analytiquement soluble, du moins dans le cas d'un modèle non-relativiste d'un hamiltonien où est seule prise en compte l'interaction coulombienne entre le proton et l'électron, considérés comme ponctuels. Il est ainsi possible d'en déduire les niveaux d'énergie, et de les comparer aux mesures des raies spectrales. L'étude théorique de l'atome d'hydrogène n'a pas qu'un intérêt purement académique, et limité à ce seul atome: en fait, elle est d'une importance considérable en physique atomique et moléculaire. Tout d'abord, elle permet de comprendre directement les spectres des ions dit hydrogénoïdes, c'est-à-dire qui ont perdu tous leurs électrons sauf un (par exemple He+, Li2+). De façon plus générale les concepts dégagés par l'étude de ce modèle permettent d'expliquer la structure des niveaux d'énergie et les spectres des atomes à plusieurs électrons, qui peuvent être compris dans le cas de modèles à électrons indépendants (approche de champ moyen).
rdf:langString El átomo de hidrógeno es el átomo más simple que existe y el único que admite una solución analítica exacta desde el punto de vista de la mecánica cuántica. El átomo de hidrógeno es conocido también como átomo monoelectrónico, debido a que está formado por un protón que se encuentra en el núcleo del átomo y que contiene más del 99,945 % de la masa del átomo, y un solo electrón -unas 1836 veces menos masivo que el protón- que "orbita" alrededor de dicho núcleo (aunque también pueden existir átomos de hidrógeno con núcleos formados por un protón y 1 o 2 neutrones más, llamados deuterio y tritio, respectivamente). Se puede hacer una analogía pedagógica del átomo de hidrógeno con un Sistema Solar, donde el sol sería el único Núcleo atómico y que tiene la mayor cantidad de masa -concretamente es el 99,86 % del Sistema Solar- y en su órbita tuviera un solo planeta (Electrón) que conformaría el resto de la masa del Sistema (átomo de protio (1H)). Esto hace del hidrógeno el más simple de todos los elementos de la tabla periódica de los elementos.
rdf:langString Atom hidrogen ialah atom yang berasal dari unsur kimia hidrogen. Muatan netral atom berisi satu proton bermuatan positif dan elektron bermuatan negatif yang terikat kepada nukleus oleh Hukum Coulomb. Atom hidrogen terdiri dari sekitar 75 % di alam semesta. Dalam kehidupan sehari-hari di Bumi, atom-atom hidrogen yang terisolasi (biasanya disebut "atom hidrogen") sangat jarang adanya. Sebaliknya, hidrogen cenderung untuk menggabungkan dengan atom lain dalam senyawa, atau dengan dirinya sendiri untuk membentuk gas hidrogen biasa, H2. Dalam Bahasa Inggris, penggunaan perkataan "atomic hydrogen" dan "hydrogen atom," biasanya mempunyai makna yang tumpang tindih. Sebagai contoh, sebuah molekul air mengandung dua atom hidrogen, tetapi tidak berisi atom yang mengandung hidrogen (yang mengarah terhadap atom hidrogen yang terisolasi).
rdf:langString 水素原子(すいそげんし、(英: Hydrogen atom)は、水素の原子である。1つの陽子と1つの電子により構成されている。水素原子は宇宙の全質量の約75%を占める。 水素は地球上では他の原子との化合物(例えば、水)を作るか、水素分子(H2)の状態で存在していることが多く、単に水素と言えば一般的には水素分子のことを指す。 電気分解などにより単離した水素原子や、酸素や窒素などと結びついた水素原子は、反応性が高く、その還元作用のため活性水素 (Active hydrogen) と呼ばれる。
rdf:langString In meccanica quantistica l'atomo di idrogeno è uno dei più semplici sistemi studiabili in 3 dimensioni, poiché possiede un nucleo con un protone e ha un solo elettrone. È il tipico esempio di moto in campo a simmetria centrale, ed il sistema gode di notevoli proprietà di simmetria. La massa inerziale dell'atomo di idrogeno è minore della somma della massa del protone e dell'elettrone che lo compongono, considerate separatamente, per una differenza pari alla quantità di energia negativa nascosta che deve essere fornita all'atomo per separarli, e vincere l'attrazione elettro-magnetica elettrone-protone che tiene unito l'atomo, contrastando la repulsione fra le loro masse gravitazionali.
rdf:langString Een waterstofatoom is een atoom van het chemische element waterstof. Het elektrisch neutrale atoom bevat een positief geladen proton en een negatief geladen elektron, dat aan de kern wordt gebonden door de coulombkracht. De meest voorkomende isotoop, protium (ook waterstof-1 of lichte waterstof genoemd), bevat geen neutronen; andere isotopen van waterstof, zoals deuterium en tritium, bevatten respectievelijk een en twee neutronen.
rdf:langString Väteatomen är ett av få system för vilket det finns en exakt kvantmekanisk beskrivning. Systemet består av två laddade partiklar, den positivt laddade atomkärnan och en negativt laddad elektron. Lösningarna för väteatomen och vätelika system ligger till grund för mycket av vår kunskap och teori om atomer och molekyler samt även hur det periodiska systemet är uppbyggt.
rdf:langString А́том водоро́да — физико-химическая система, состоящая из атомного ядра, несущего элементарный положительный электрический заряд, и электрона, несущего элементарный отрицательный электрический заряд. В состав атомного ядра, как правило, входит протон или протон с одним или несколькими нейтронами, образуя изотопы водорода. Электрон образует электронную оболочку; наибольшая вероятность обнаружения электрона в единичном объёме наблюдается для центра атома. Интегрирование по сферическому слою показывает, что наибольшая вероятность обнаружения электрона в единичном слое соответствует среднему радиусу, равному боровскому радиусу ангстрема. Атом водорода имеет особое значение в квантовой механике и , поскольку для него задача двух тел имеет точное или приближённое аналитическое решение. Эти решения применимы для разных изотопов водорода (с соответствующими поправками). В квантовой механике атом водорода описывается двухчастичной матрицей плотности или двухчастичной волновой функцией. Также упрощённо рассматривается как электрон в электростатическом поле бесконечно тяжёлого атомного ядра, не участвующего в движении (или просто в кулоновском электростатическом потенциале вида 1/r). В этом случае атом водорода описывается редуцированной одночастичной матрицей плотности или волновой функцией. В 1913 году Нильс Бор предложил модель атома водорода, имеющую множество предположений и упрощений, и вывел из неё спектр излучения водорода. Предположения модели не были полностью правильны, но тем не менее приводили к верным значениям энергетических уровней атома. Результаты расчётов Бора были подтверждены в 1925—1926 годах строгим квантовомеханическим анализом, основанном на уравнении Шрёдингера. Решение уравнения Шрёдингера для электрона в электростатическом поле атомного ядра выводится в аналитической форме. Оно описывает не только уровни энергии электрона и спектр излучения, но и форму атомных орбиталей.
rdf:langString А́том во́дню (Гідроген) — найпростіший з атомів хімічних елементів. Він складається з позитивно зарядженого ядра, яке для основного ізотопа є просто протоном, й одного електрона. Квантовомеханічна задача про дозволені енергетичні стани атома водню розв'язується точно. Зважаючи на цю обставину, хвильові функції, отримані як власні функції цієї задачі, є базовими для розгляду решти елементів періодичної таблиці. Тому спектр атома водню має велике значення для фізики й хімії.
rdf:langString 氫原子是氫元素的原子。電中性的原子含有一個正價的質子與一個負價的電子,被庫侖定律束縛於原子核內。在大自然中,氫原子是豐度最高的同位素,稱為氫,氫-1 ,或氕。氫原子不含任何中子,別的氫同位素含有一個或多個中子。這條目主要描述氫-1 。 氫原子擁有一個質子和一個電子,是一個的簡單的二體系統。系統內的作用力只跟二體之間的距離有關,是反平方連心力,不需要將這反平方連心力二體系統再加理想化,簡單化。描述這系統的(非相對論性的)薛丁格方程式有解析解,也就是說,解答能以有限數量的常見函數來表達。滿足這薛丁格方程式的波函數可以完全地描述電子的量子行為。因此可以這樣說,在量子力學裏,沒有比氫原子問題更簡單,更實用,而又有解析解的問題了。所推演出來的基本物理理論,又可以用簡單的實驗來核對。所以,氫原子問題是個很重要的問題。 另外,理論上薛丁格方程式也可用於求解更複雜的原子與分子。但在大多數的案例中,皆無法獲得解析解,而必須藉用電腦(計算機)來進行計算與模擬,或者做一些簡化的假設,方能求得問題的解析解。
<perCent> 99.985
rdf:langString hydrogen
rdf:langString stable
rdf:langString
xsd:integer 1
xsd:integer 0
xsd:integer 1
xsd:nonNegativeInteger 39857

data from the linked data cloud