Fragment-based lead discovery

http://dbpedia.org/resource/Fragment-based_lead_discovery an entity of type: Software

Descobriment dirigit basat en fragments —en anglès fragment-based lead discovery (FBLD)— també conegut com a descobriment de fàrmacs basat en fragments —fragment-based drug discovery (FBDD) és un mètode utilitzat per trobar compostos com a part del procés de descoberta de fàrmacs. Esta basat en la identificació de fragments químics petits, els quals poden lligar només feblement a l'objectiu biològic, i llavors fer-los créixer o combinar-los per produir un compost amb una afinitat més alta. rdf:langString
Fragment-based lead discovery (FBLD) also known as fragment-based drug discovery (FBDD) is a method used for finding lead compounds as part of the drug discovery process. Fragments are small organic molecules which are small in size and low in molecular weight. It is based on identifying small chemical fragments, which may bind only weakly to the biological target, and then growing them or combining them to produce a lead with a higher affinity. FBLD can be compared with high-throughput screening (HTS). In HTS, libraries with up to millions of compounds, with molecular weights of around 500 Da, are screened, and nanomolar binding affinities are sought. In contrast, in the early phase of FBLD, libraries with a few thousand compounds with molecular weights of around 200 Da may be screened, a rdf:langString
rdf:langString Descobriment dirigit basat en fragments
rdf:langString Fragment-based lead discovery
xsd:integer 18526787
xsd:integer 1062606959
rdf:langString Descobriment dirigit basat en fragments —en anglès fragment-based lead discovery (FBLD)— també conegut com a descobriment de fàrmacs basat en fragments —fragment-based drug discovery (FBDD) és un mètode utilitzat per trobar compostos com a part del procés de descoberta de fàrmacs. Esta basat en la identificació de fragments químics petits, els quals poden lligar només feblement a l'objectiu biològic, i llavors fer-los créixer o combinar-los per produir un compost amb una afinitat més alta. FBLD pot ser comparat amb alt-throughput exploració (HTS). En HTS, biblioteques fins i tot amb milions de compostos, amb pesos moleculars al voltant de 500 Da, son avaluades, i les seves afinitats nanomolars són buscades. Per contrast, en la fase primerenca de FBLD, biblioteques amb uns milers de compostos amb pesos moleculars al voltant de 200 Da poden ser avaluades, i les seves afinitats poden ser considerades útils.
rdf:langString Fragment-based lead discovery (FBLD) also known as fragment-based drug discovery (FBDD) is a method used for finding lead compounds as part of the drug discovery process. Fragments are small organic molecules which are small in size and low in molecular weight. It is based on identifying small chemical fragments, which may bind only weakly to the biological target, and then growing them or combining them to produce a lead with a higher affinity. FBLD can be compared with high-throughput screening (HTS). In HTS, libraries with up to millions of compounds, with molecular weights of around 500 Da, are screened, and nanomolar binding affinities are sought. In contrast, in the early phase of FBLD, libraries with a few thousand compounds with molecular weights of around 200 Da may be screened, and millimolar affinities can be considered useful. FBLD is a technique being used in research for discovering novel potent inhibitors. This methodology could help to design multitarget drugs for multiple diseases. The multitarget inhibitor approach is based on designing an inhibitor for the multiple targets. This type of drug design opens up new polypharmacological avenues for discovering innovative and effective therapies. Neurodegenerative diseases like Alzheimer’s (AD) and Parkinson’s, among others, also show rather complex etiopathologies. Multitarget inhibitors are more appropriate for addressing the complexity of AD and may provide new drugs for controlling the multifactorial nature of AD, stopping its progression.
xsd:nonNegativeInteger 12361

data from the linked data cloud