Conserved signature indels

http://dbpedia.org/resource/Conserved_signature_indels

Conserved signature inserts and deletions (zu Deutsch ‚konservierte charakteristische Indels‘, CSI) sind Indels in konservierten proteincodierenden DNA-Sequenzen. Sie werden in der Biochemie und Genetik als Marker zur Bestimmung von Verwandtschaftsgraden zwischen verschiedenen Arten verwendet. rdf:langString
Conserved signature inserts and deletions (CSIs) in protein sequences provide an important category of molecular markers for understanding phylogenetic relationships. CSIs, brought about by rare genetic changes, provide useful phylogenetic markers that are generally of defined size and they are flanked on both sides by conserved regions to ensure their reliability. While indels can be arbitrary inserts or deletions, CSIs are defined as only those protein indels that are present within conserved regions of the protein. rdf:langString
rdf:langString Conserved Signature Indel
rdf:langString Conserved signature indels
xsd:integer 35155103
xsd:integer 1086347579
rdf:langString Conserved signature inserts and deletions (zu Deutsch ‚konservierte charakteristische Indels‘, CSI) sind Indels in konservierten proteincodierenden DNA-Sequenzen. Sie werden in der Biochemie und Genetik als Marker zur Bestimmung von Verwandtschaftsgraden zwischen verschiedenen Arten verwendet.
rdf:langString Conserved signature inserts and deletions (CSIs) in protein sequences provide an important category of molecular markers for understanding phylogenetic relationships. CSIs, brought about by rare genetic changes, provide useful phylogenetic markers that are generally of defined size and they are flanked on both sides by conserved regions to ensure their reliability. While indels can be arbitrary inserts or deletions, CSIs are defined as only those protein indels that are present within conserved regions of the protein. The CSIs that are restricted to a particular clade or group of species, generally provide good phylogenetic markers of common evolutionary descent. Due to the rarity and highly specific nature of such changes, it is less likely that they could arise independently by either convergent or parallel evolution (i.e. homoplasy) and therefore are likely to represent synapomorphy. Other confounding factors such as differences in evolutionary rates at different sites or among different species also generally do not affect the interpretation of a CSI. By determining the presence or absence of CSIs in an out-group species, one can infer whether the ancestral form of the CSI was an insert or deletion and this can be used to develop a rooted phylogenetic relationship among organisms. Most CSIs that have been identified have been found to exhibit high predictive value and they generally retain the specificity for the originally identified clades of species. Therefore, based upon their presence or absence, it should be possible to identify both known and even previously unknown species belonging to these groups in different environments.
xsd:nonNegativeInteger 20597

data from the linked data cloud