Big Bang nucleosynthesis

http://dbpedia.org/resource/Big_Bang_nucleosynthesis an entity of type: Thing

Nukleosyntéza (nebo prvotní nukleosyntéza, zkráceně BBN z Big Bang Nucleosynthesis) v kosmologii označuje vznik atomových jader, kromě jader nejlehčího izotopu vodíku, během raných fází vesmíru. Mnoho vědců věří, že nukleosyntéza se odehrála jen krátce po Velkém třesku a že je zodpovědná za vznik těžšího izotopu vodíku známého jako deuterium (H-2 nebo D), izotopů helia 3He a 4He a izotopů lithia 6Li a 7Li. Kromě těchto stabilních jader vznikly i nestabilní, radioaktivní izotopy, zejména tritium (3H), beryllium-7 (7Be) a beryllium-8 (8Be). Tyto nestabilní izotopy se buď rozpadly, nebo splynuly s jinými stabilními jádry. rdf:langString
En cosmología física, la nucleosíntesis primordial (nucleosíntesis del Big Bang o nucleosíntesis cosmológica) se refiere al periodo durante el cual se formaron determinados elementos ligeros: el usual 1H (el hidrógeno ligero), su isótopo el deuterio (2H o D), los isótopos del helio 3He y 4He y los isótopos del litio 7Li y 6Li y algunos isótopos inestables o radiactivos como el tritio 3H, y los isótopos del berilio, 7Be y 8Be, en cantidades despreciables. rdf:langString
Dalam kosmologi, nukleosintesis Big Bang atau nukleosintesis primordial (bahasa Inggris Big Bang Nucleosynthesis = BBN) merujuk pada produksi inti selain H-1, hidrogen normal, selama fase awal alam semesta, beberapa saat setelah Big Bang. Dipercaya bahwa peristiwa ini bertangungjawab pada pembentukan hidrogen (H-1 atau H) dan isotopnya yaitu deuterium (H-2 atau D), isotop helium He-3 dan He-4, dan isotop lithium Li-7. rdf:langString
대폭발 핵합성(大爆發核合成, 영어: Big Bang nucleosynthesis) 또는 원시 핵합성(原始核合成, 영어: primordial nucleosynthesis)은 대폭발이라는 우주의 초기 탄생 과정 동안 수소-1 이외의 원자핵이 생성되던 과정을 일컫는다. 대폭발 핵합성은 수소의 동위원소인 중수소, 헬륨 동위원소인 헬륨-3, 헬륨-4, 그리고 리튬의 동위원소인 리튬-6, 리튬-7이 생성된 이유로 지목받고 있다. rdf:langString
ビッグバン元素合成(ビッグバンげんそごうせい、big bang nucleosynthesis)とは、現代宇宙論において、水素1以外の元素の原子核が宇宙の発展の各段階で形成されたことを表すものである。元素合成の基本原理は、ビッグバンの数分後から始まり、重水素、ヘリウム3およびヘリウム4、リチウム6およびリチウム7の形成に関与したと考えられている。さらに、これらの安定原子核の他に、三重水素、ベリリウム7、ベリリウム8等の不安定原子核、放射性原子核も形成された。不安定原子核は、崩壊するか、他の原子核と融合して安定な原子核を作るのに用いられた。 rdf:langString
Em Cosmologia, a nucleossíntese primordial (ou nucleossíntese do Big Bang) se refere a um período de 10 segundos a 20 minutos que se iniciou após o Big Bang, durante o qual foram formados alguns elementos químicos leves: o abundante hidrogênio-1 (1H), também conhecido como prótio, seu isótopo, o deutério (2H ou D), os isótopos hélio-3 (3He), hélio-4 (4He) e lítio-7 (7Li). Além desses núcleos estáveis foram também produzidos dois isótopos instáveis: o trítio (3H) e o berílio-7 (7Be). rdf:langString
太初核合成(Big Bang nucleosynthesis,縮寫為BBN,也稱為primordial nucleosynthesis、archeonucleosynthesis、 archonucleosynthesis、protonucleosynthesis或paleonucleosynthesis)是物理宇宙學敘述宇宙在早期階段產生核的過程,產生的是最輕的氫的同位素H-1(氫-1,1H是有一個質子做為核)。大多數宇宙學家認為,原始的核合成發生在大爆炸後大約10秒到20分鐘的時間間隔內,同時根據計算,宇宙中大部分氦的形成是氦的同位素氦-4(4He),以及少量的氫的同位素氘(2H或D),氦的同位素氦-3(3He),以即少量的鋰-7(7Li)。除了這些穩定的核之外,還產生了兩種不穩定的放射性同位素:氫的同位素氚(重氫,3H或T);和鈹的同位素鈹-7(7鈹);但這些不穩定的同位素後來分別衰變為如前所述的氦-3(3He)和鋰-7(7Li)。 基本上,所有比鋰重的元素都是在很久以後,在恆星演化和爆炸中通過恒星核合成產生的。 rdf:langString
Первинний нуклеосинтез — початкова стадія нуклеосинтезу. Він відбувся у перші три хвилини після Великого вибуху. Впродовж цієї стадії утворилися легкі елементи — протій ≈77%, гелій-4 (≈23 %), гелій-3 (3×10-4 %), дейтерій (5×10-5 %) та літій-7 (5×10-10 %). rdf:langString
يشير تخليق الانفجار العظيم النووي في علم الكون الفيزيائي، (يرمز له اختصاراً BBN، كما يسمّى «التخليق النووي الابتدائي» الذي حدث مباشرة بعد الانفجار العظيم) وأدى إلى إنتاج نوى العناصر الأثقل من نظائر الهيدروجين خلال المراحل المبكرة الأولى من تشكّل الكون. قدّر علماء الفلك أن التخليق النووي الابتدائي قد جرى خلال وقت قصير بين 10 ثوان إلى 20 دقيقة بعد الانفجار العظيم، حيث أدى في البداية إلى تشكيل أغلب الهيليوم في الكون على شكل النظير هيليوم-4، بالإضافة إلى كميات صغيرة من الديوتيريوم والنظير هيليوم-3، وكميات قليلة جداً من النظير ليثيوم-7. بالإضافة إلى هذه النظائر المستقرة السابقة هناك نظيرين غير مستقرين (نويدات مشعة) تشكلا وهما التريتيوم و بيريليوم-7، واللذان يضمحلّان (يتحللان) لاحقاً إلى He-3 و Li-7. rdf:langString
En cosmologia, la nucleosíntesi primordial és el breu període després del big bang durant el qual es van formar determinats elements lleugers. En aquest període, la temperatura de l'Univers primigeni permeté la formació de determinats elements: l'hidrogen (H), el deuteri (D), els isòtops 3He, 4He i 7Li). La sorprenent coincidència entre els valors predits i les abundàncies d'aquests elements inferides a partir de les observacions es pot considerar un complet èxit de la teoria. rdf:langString
In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen (hydrogen-1, 1H, having a single proton as a nucleus) during the early phases of the Universe. Primordial nucleosynthesis is believed by most cosmologists to have taken place in the interval from roughly 10 seconds to 20 minutes after the Big Bang, and is calculated to be responsible for the formation of most of the universe's helium as the isotope helium-4 (4He), along with small amounts of the hydrogen isotope deuterium (2H or D), the helium isotope helium-3 (3He), and a very small amount of the lithium isotope lithium-7 (7Li). In addition to these stable nuclei, two unstable or radioactive isotopes we rdf:langString
Die primordiale Nukleosynthese (BBN, Big-Bang Nucleosynthesis) ist die Bildung von hauptsächlich 4He und Spuren anderer leichter Nuklide aus Protonen und Neutronen, etwa 100 bis 1000 Sekunden nach dem Urknall. Die schwereren Elemente entstehen in Sternen, also viel später. Die größte Diskrepanz zu beobachteten Anteilen gilt als Lithiumproblem. rdf:langString
La nucléosynthèse primordiale (BBN, pour l'anglais Big Bang nucleosynthesis) est un événement de nucléosynthèse (c'est-à-dire de synthèse de noyaux atomiques) qui, selon la théorie du Big Bang, s'est déroulé dans tout l'Univers pendant les premières dizaines de minutes de son histoire (dans un intervalle de temps compris entre 10 s et 20 min). rdf:langString
In cosmologia, la nucleosintesi primordiale (in inglese Big Bang nucleosynthesis, da cui l'acronimo BBN) è il processo di nucleosintesi di nuclei atomici più pesanti dell'idrogeno-1, avvenuto nelle prime fasi di esistenza dell'Universo. In pratica, tutti gli elementi più pesanti del litio furono creati molto più avanti, durante la nucleosintesi stellare collegata all'esplosione delle stelle. rdf:langString
Pierwotna nukleosynteza – nukleosynteza, która zachodziła we wczesnej fazie ewolucji Wszechświata, w wyniku której doszło do powstania jąder atomowych innych niż proton (jądro wodoru 1H). Proces został po raz pierwszy opisany w 1948 r. w Physical Review w pracy pod tytułem „The Origin of Chemical Elements”. Jej twórcami, według zgłoszenia publikacji, byli Ralph Alpher, Hans Bethe i George Gamow, teorię nazwano teorią αβγ. Stosunek zawartości helu, deuteru i litu do zawartości wodoru w obserwowanym Wszechświecie zgadza się z przewidywaniami modelu Wielkiego Wybuchu. rdf:langString
Oerknal-nucleosynthese is de vorming van lichte atoomkernen tussen 10 seconden en 20 minuten na de oerknal. Dit moet niet verward worden met nucleosynthese, die pas 200 miljoen jaar later begon in sterren. rdf:langString
Big bang-nukleosyntes (även primordial nukleosyntes eller primordiell nukleosyntes) avser produktionen av atomkärnor tyngre än 1H (det vill säga protonen, den vanliga, lätta, väteisotopen) under universums tidiga faser enligt den gällande kosmologiska standardmodellen. Denna nukleosyntes skedde endast minuter efter själva big bang och anses ha skapat den tyngre väteisotopen kallad deuterium (2H eller D), heliumisotoperna 3He och 4He, samt litiumisotoperna 6Li och 7Li. Förutom dessa stabila kärnor skapades några instabila, radioaktiva, isotoper: tritium (3H); beryllium-7 (7Be), och beryllium-8 (8Be). Dessa instabila kärnor föll antingen isär eller genomgick fusion med andra kärnor och bildade stabila isotoper. rdf:langString
Первичный нуклеосинтез — совокупность процессов, которые привели к образованию химического состава вещества во Вселенной до появления первых звёзд. К началу первичного нуклеосинтеза, через 3 минуты после Большого взрыва, соотношение нейтронов и протонов составляло 1 к 7. Через 20 минут после Большого взрыва первичный нуклеосинтез завершился: в барионной массе Вселенной стали доминировать водород (75% массы) и гелий (25% массы). В меньшем количестве образовались дейтерий, гелий-3 и литий-7, другие же элементы сформировались в незначительном количестве. Наблюдаемое содержание различных элементов достаточно хорошо сходится с теоретически предсказанным, за исключением содержания лития-7. Несмотря на это исключение, считается, что реальная распространённость химических элементов хорошо описывае rdf:langString
rdf:langString تخليق الانفجار العظيم النووي
rdf:langString Nucleosíntesi primordial
rdf:langString Prvotní nukleosyntéza
rdf:langString Primordiale Nukleosynthese
rdf:langString Nucleosíntesis primordial
rdf:langString Big Bang nucleosynthesis
rdf:langString Nukleosintesis Ledakan Dahsyat
rdf:langString Nucléosynthèse primordiale
rdf:langString Nucleosintesi primordiale
rdf:langString ビッグバン元素合成
rdf:langString 대폭발 핵합성
rdf:langString Oerknal-nucleosynthese
rdf:langString Pierwotna nukleosynteza
rdf:langString Nucleossíntese primordial
rdf:langString Первичный нуклеосинтез
rdf:langString Big bang-nukleosyntes
rdf:langString Первинний нуклеосинтез
rdf:langString 太初核合成
xsd:integer 44058
xsd:integer 1117607689
xsd:date 2013-02-07
rdf:langString Nukleosyntéza (nebo prvotní nukleosyntéza, zkráceně BBN z Big Bang Nucleosynthesis) v kosmologii označuje vznik atomových jader, kromě jader nejlehčího izotopu vodíku, během raných fází vesmíru. Mnoho vědců věří, že nukleosyntéza se odehrála jen krátce po Velkém třesku a že je zodpovědná za vznik těžšího izotopu vodíku známého jako deuterium (H-2 nebo D), izotopů helia 3He a 4He a izotopů lithia 6Li a 7Li. Kromě těchto stabilních jader vznikly i nestabilní, radioaktivní izotopy, zejména tritium (3H), beryllium-7 (7Be) a beryllium-8 (8Be). Tyto nestabilní izotopy se buď rozpadly, nebo splynuly s jinými stabilními jádry.
rdf:langString En cosmologia, la nucleosíntesi primordial és el breu període després del big bang durant el qual es van formar determinats elements lleugers. En aquest període, la temperatura de l'Univers primigeni permeté la formació de determinats elements: l'hidrogen (H), el deuteri (D), els isòtops 3He, 4He i 7Li). La sorprenent coincidència entre els valors predits i les abundàncies d'aquests elements inferides a partir de les observacions es pot considerar un complet èxit de la teoria. El model estàndard del big bang assumeix l'existència de tres famílies de neutrins (associades a l'electró, el muó i el tau), així com un valor concret de la vida mitjana del neutró (una de les avaluacions més recents és τn = 886,7±1,9 s). En aquest context, els càlculs de nucleosíntesi primordial depenen principalment d'un sol paràmetre: la proporció entre el nombre de barions, i fotons en l'Univers, η. Els primers estudis de nucleosíntesi primordial van començar amb els treballs de George Gamow, , i Robert Hermann als anys 40: consideraven l'Univers primigeni com un forn nuclear en el qual podia «cuinar-se» la totalitat de la taula periòdica dels elements, especulació incorrecta, però que els va dur a predir l'existència de la radiació de fons. Els càlculs esmentats parteixen de dues hipòtesis: la primera, que l'Univers homogeni i isòtrop es pot descriure mitjançant la teoria de la relativitat general, i la segona, que la temperatura de l'Univers en les seves fases inicials era prou elevada com per a presentar un estat d'equilibri estadístic nuclear entre les distintes espècies. Després de 10-4 segons, la temperatura era 1012 K (uns 100 MeV). En l'era leptònica, l'Univers hauria estat una mescla de diferents partícules, en què la proporció aproximada entre barions i fotons era η = 10-10. En aquesta fase, el ritme d'expansió de l'Univers era major que les escales de temps de les diverses interaccions (electromagnètica, forta, o dèbil), i per tant les reaccions nuclears es produïen tant en un sentit, com a la inversa, i mantenien l'equilibri entre les espècies. Quan el ritme d'expansió és inferior a alguna interacció, es produeix el desacoblament. Als 0,1 segons l'Univers s'havia refredat fins a una temperatura T = 3·10¹⁰ K (uns 4 MeV). El temps característic de les interaccions dèbils és proporcional a T⁵, i per tant menys sensible als canvis de temperatura: els neutrins deixaren d'estar en equilibri, i es desacoblaren, i començaren a expandir-se a una temperatura inversament proporcional a la mida de l'Univers. Altres formes d'interacció dèbil com neutró + positró ↔ protó + antineutrí eren encara prou ràpides com per a mantenir un equilibri entre neutrons i protons. Alguns autors hi han suggerit escenaris alternatius. L'existència d'inhomogeneïtats hauria tingut una notable repercussió en la nucleosíntesi primordial. Passat 1 segon després del big bang (T = 10 ¹⁰ K, 1 MeV), les reaccions que mantenien l'equilibri entre neutrons i protons es tornaren més lentes que l'expansió. La proporció n/p es "congelà" a l'entorn de 0,18. D'aquesta manera, el major contingut de protons donaria com a resultat l'abundància d'hidrogen i heli. Als 10 segons (T = 3·109 k, 0,5 MeV), els fotons deixaren de ser prou energètics per crear parells electró-positró. Es produí una aniquilació que dona lloc a una proporció d'un electró per cada 1.000 milions de fotons. Va ser la fi de l'era leptònica, i donà lloc a l'era de la radiació, que durà fins passats 100.000 anys del big bang, moment en què matèria i energia es desacoblaren, a uns 3.000 K, i produïren la radiació de fons, que a causa del desplaçament al roig, ara tenen una temperatura d'antena d'uns 2,7 K. Durant l'era de la radiació, no es va poder produir deuteri, o nuclis més pesants, fins que la temperatura descendí a 9·108 K (0,1 MeV), uns 200 segons després de l'explosió. En aquest moment, la síntesi del deuteri es produí en quantitats apreciables i començà la nucleosíntesi primordial. El deuteri es combinà amb els protons: D+p↔3He. Poc després, la major part dels neutrons lliures s'integraren en 4He. Amb una proporció n/p = 0,15, lleugerament a la congelació la proporció d'hidrogen, i heli-4, és d'un 75%, i un 25% respectivament. Tal com anticiparen Enrico Fermi, i els seus col·laboradors, com que hi ha nuclis atòmics estables de massa atòmica A = 5, o A = 8, l'activitat nuclear pràcticament s'aturà en l'heli-4, a causa del fet que la combinació de les espècies més abundants: hidrogen, i heli-4 produeixen un nucli inestable de massa A = 5. La síntesi acaba cap als 1.000 segons després del big bang, amb una temperatura de 3·108 K. Posteriorment, la desintegració del triti en heli-3, mentre els nuclis de massa A = 7 acabaren transformats en liti-7, produïren un univers compost majorment per hidrogen i heli-4; amb traces de deuteri, heli-3, i liti-7. La contribució del big bang a la síntesi de liti-6, beril·li-9, bor-10, o bor-11, és purament marginal, amb comparació amb altres processos de síntesi. La resta d'elements de la taula periòdica haurien d'esperar a ser sintetitzats dins el si dels estels, autèntics forns nuclears.
rdf:langString يشير تخليق الانفجار العظيم النووي في علم الكون الفيزيائي، (يرمز له اختصاراً BBN، كما يسمّى «التخليق النووي الابتدائي» الذي حدث مباشرة بعد الانفجار العظيم) وأدى إلى إنتاج نوى العناصر الأثقل من نظائر الهيدروجين خلال المراحل المبكرة الأولى من تشكّل الكون. قدّر علماء الفلك أن التخليق النووي الابتدائي قد جرى خلال وقت قصير بين 10 ثوان إلى 20 دقيقة بعد الانفجار العظيم، حيث أدى في البداية إلى تشكيل أغلب الهيليوم في الكون على شكل النظير هيليوم-4، بالإضافة إلى كميات صغيرة من الديوتيريوم والنظير هيليوم-3، وكميات قليلة جداً من النظير ليثيوم-7. بالإضافة إلى هذه النظائر المستقرة السابقة هناك نظيرين غير مستقرين (نويدات مشعة) تشكلا وهما التريتيوم و بيريليوم-7، واللذان يضمحلّان (يتحللان) لاحقاً إلى He-3 و Li-7. إن العناصر الأثقل من الليثيوم قد تشكّلت بعد ذلك عندما تكونت النجوم وجرت فيها تفاعلات الانصهار النجمي، في النجوم النامية والمتفجرة.
rdf:langString Die primordiale Nukleosynthese (BBN, Big-Bang Nucleosynthesis) ist die Bildung von hauptsächlich 4He und Spuren anderer leichter Nuklide aus Protonen und Neutronen, etwa 100 bis 1000 Sekunden nach dem Urknall. Die schwereren Elemente entstehen in Sternen, also viel später. Die BBN-Theorie liefert die Mengenverhältnisse der Nuklide. Ihre Parameter sind nicht frei, sondern Messwerte: Massen und Reaktionsraten der Teilchen werden im Labor bestimmt und das anfängliche Baryon-zu-Photon-Verhältnis ergibt sich immer genauer aus dem Muster des kosmischen Mikrowellenhintergrunds (CMB). Das Ergebnis, dass 75,5 % der Baryonen als Protonen (1H) übrig bleiben und 24,5 % sich in Helium 4He wiederfinden sollten, stimmt genau mit den Beobachtungen überein. Dies gilt als eine der stärksten Stützen für die Urknall-Theorie, neben der kosmologischen Rotverschiebung und des CMB. Die zu 4He führenden Reaktionsketten liefen wegen der schnell abnehmenden Dichte und Temperatur des Kosmos nicht ganz vollständig ab. Es verblieben kleine Spuren von Zwischenprodukten. Nach Zerfall der radioaktiven Nuklide T=3H und 7Be waren das noch D=2H, 3He, und 7Li. Deren Anteile (10−4 bis 10−10, bezogen auf H) hängen von ab, das damit für diesen Zeitpunkt messbar wird. ist auch aus dem CMB, also für den Zeitpunkt der Rekombination messbar sowie aus der aktuell sichtbaren Materie. Die beobachtete Konstanz von stützt das Standardmodell bzw. schränkt Modifikationen ein. Die größte Diskrepanz zu beobachteten Anteilen gilt als Lithiumproblem.
rdf:langString In physical cosmology, Big Bang nucleosynthesis (abbreviated BBN, also known as primordial nucleosynthesis) is the production of nuclei other than those of the lightest isotope of hydrogen (hydrogen-1, 1H, having a single proton as a nucleus) during the early phases of the Universe. Primordial nucleosynthesis is believed by most cosmologists to have taken place in the interval from roughly 10 seconds to 20 minutes after the Big Bang, and is calculated to be responsible for the formation of most of the universe's helium as the isotope helium-4 (4He), along with small amounts of the hydrogen isotope deuterium (2H or D), the helium isotope helium-3 (3He), and a very small amount of the lithium isotope lithium-7 (7Li). In addition to these stable nuclei, two unstable or radioactive isotopes were also produced: the heavy hydrogen isotope tritium (3H or T); and the beryllium isotope beryllium-7 (7Be); but these unstable isotopes later decayed into 3He and 7Li, respectively, as above. Essentially all of the elements that are heavier than lithium were created much later, by stellar nucleosynthesis in evolving and exploding stars.
rdf:langString En cosmología física, la nucleosíntesis primordial (nucleosíntesis del Big Bang o nucleosíntesis cosmológica) se refiere al periodo durante el cual se formaron determinados elementos ligeros: el usual 1H (el hidrógeno ligero), su isótopo el deuterio (2H o D), los isótopos del helio 3He y 4He y los isótopos del litio 7Li y 6Li y algunos isótopos inestables o radiactivos como el tritio 3H, y los isótopos del berilio, 7Be y 8Be, en cantidades despreciables.
rdf:langString La nucléosynthèse primordiale (BBN, pour l'anglais Big Bang nucleosynthesis) est un événement de nucléosynthèse (c'est-à-dire de synthèse de noyaux atomiques) qui, selon la théorie du Big Bang, s'est déroulé dans tout l'Univers pendant les premières dizaines de minutes de son histoire (dans un intervalle de temps compris entre 10 s et 20 min). La nucléosynthèse primordiale a produit l'essentiel du deutérium et de l'hélium, et une faible proportion de lithium, de béryllium et de bore. Les autres noyaux (hormis le protium, qui ne requiert aucune synthèse) sont le produit de la nucléosynthèse stellaire, beaucoup plus tardive (et toujours en cours), et la majeure partie du lithium, du béryllium et du bore provient de réactions de spallation, également dans les étoiles.
rdf:langString Dalam kosmologi, nukleosintesis Big Bang atau nukleosintesis primordial (bahasa Inggris Big Bang Nucleosynthesis = BBN) merujuk pada produksi inti selain H-1, hidrogen normal, selama fase awal alam semesta, beberapa saat setelah Big Bang. Dipercaya bahwa peristiwa ini bertangungjawab pada pembentukan hidrogen (H-1 atau H) dan isotopnya yaitu deuterium (H-2 atau D), isotop helium He-3 dan He-4, dan isotop lithium Li-7.
rdf:langString In cosmologia, la nucleosintesi primordiale (in inglese Big Bang nucleosynthesis, da cui l'acronimo BBN) è il processo di nucleosintesi di nuclei atomici più pesanti dell'idrogeno-1, avvenuto nelle prime fasi di esistenza dell'Universo. La maggior parte dei cosmologi ritiene che la nucleosintesi primordiale sia avvenuta all'incirca tra 10 secondi e 20 minuti dopo il Big Bang e che sia stata responsabile della formazione di gran parte dell'elio presente nell'Universo, in particolare dell'isotopo elio-4 (4He), assieme a piccole quantità di deuterio (2H o D), di elio-3 (3He) e piccolissime quantità dell'isotopo litio-7 (7Li) del litio. In aggiunta a questi nuclei stabili si formarono due isotopi instabili o radionuclidi: il trizio (3H o T), isotopo pesante dell'idrogeno, e il berillio-7, isotopo del berillio. Questi due radionuclidi decaddero rispettivamente in 3He e 7Li. In pratica, tutti gli elementi più pesanti del litio furono creati molto più avanti, durante la nucleosintesi stellare collegata all'esplosione delle stelle.
rdf:langString 대폭발 핵합성(大爆發核合成, 영어: Big Bang nucleosynthesis) 또는 원시 핵합성(原始核合成, 영어: primordial nucleosynthesis)은 대폭발이라는 우주의 초기 탄생 과정 동안 수소-1 이외의 원자핵이 생성되던 과정을 일컫는다. 대폭발 핵합성은 수소의 동위원소인 중수소, 헬륨 동위원소인 헬륨-3, 헬륨-4, 그리고 리튬의 동위원소인 리튬-6, 리튬-7이 생성된 이유로 지목받고 있다.
rdf:langString Oerknal-nucleosynthese is de vorming van lichte atoomkernen tussen 10 seconden en 20 minuten na de oerknal. Dit moet niet verward worden met nucleosynthese, die pas 200 miljoen jaar later begon in sterren. Toen het heelal nog klein en heet was, ontstonden uit een kwantumfluctuatie in vacuüm fotonen. Bij uitzetting en de daarmee verbonden afkoeling ontstonden daaruit eerst quarks en dan daaruit protonen en neutronen. Protonen zijn stabiel, maar een neutron vervalt met vervaltijd 886 seconden door de zwakke kernkracht met bètaverval tot een proton, een elektron en een elektron-antineutrino. Zo ontstond een verhouding protonen:neutronen 7:1. Toen het heelal door uitzetting kouder werd, gingen neutronen zich binden aan protonen, waardoor die verhouding 7:1 ingevroren werd. Die verhouding is nu nog terug te vinden in de massaverhouding waterstof:helium 3:1. Inderdaad: dit betekent 12 waterstofkernen met massa 1 van 1 proton tegen 1 heliumkern met massa 4 van 2 protonen en 2 neutronen, dus 12 + 2 = 14 protonen : 2 neutronen of 7:1. Eerst werd gedacht, dat de optredende reactie enkel vorming van deuterium was: n + p → D. Latere metingen en berekeningen toonden aan, dat in dit vroeg stadium ook al tritium, helium-3, helium-4 en lithium-7 ontstaan moeten zijn. Alle zwaardere elementen zijn pas later door nucleosynthese in sterren ontstaan.
rdf:langString ビッグバン元素合成(ビッグバンげんそごうせい、big bang nucleosynthesis)とは、現代宇宙論において、水素1以外の元素の原子核が宇宙の発展の各段階で形成されたことを表すものである。元素合成の基本原理は、ビッグバンの数分後から始まり、重水素、ヘリウム3およびヘリウム4、リチウム6およびリチウム7の形成に関与したと考えられている。さらに、これらの安定原子核の他に、三重水素、ベリリウム7、ベリリウム8等の不安定原子核、放射性原子核も形成された。不安定原子核は、崩壊するか、他の原子核と融合して安定な原子核を作るのに用いられた。
rdf:langString Pierwotna nukleosynteza – nukleosynteza, która zachodziła we wczesnej fazie ewolucji Wszechświata, w wyniku której doszło do powstania jąder atomowych innych niż proton (jądro wodoru 1H). Proces został po raz pierwszy opisany w 1948 r. w Physical Review w pracy pod tytułem „The Origin of Chemical Elements”. Jej twórcami, według zgłoszenia publikacji, byli Ralph Alpher, Hans Bethe i George Gamow, teorię nazwano teorią αβγ. Według modelu Wielkiego Wybuchu, Wszechświat w początkach swego istnienia miał dużą gęstość i temperaturę, które systematycznie malały. Pierwotna nukleosynteza zaszła pod koniec ery leptonowej, gdy istniały tylko cząstki elementarne i nukleony (czyli protony i neutrony), będące w równowadze termodynamicznej. Później, w miarę spadku temperatury Wszechświata, procesy syntezy jądrowej pomiędzy nukleonami doprowadziły do utworzenia jąder deuteru 2H, helu 3He i 4He i litu oraz niewielkich ilości berylu i boru. Szybki spadek temperatury i gęstości w miarę rozszerzania się Wszechświata spowodował zahamowanie tego procesu. Brak stabilnych jąder o liczbie masowej 8 praktycznie uniemożliwił powstanie w tym procesie jąder pierwiastków cięższych niż beryl. Pierwiastki o liczbach masowych większych od 8 powstają w wyniku syntezy w gwiazdach, wybuchach supernowych lub są otrzymywane w laboratoriach. Stosunek zawartości helu, deuteru i litu do zawartości wodoru w obserwowanym Wszechświecie zgadza się z przewidywaniami modelu Wielkiego Wybuchu.
rdf:langString Первичный нуклеосинтез — совокупность процессов, которые привели к образованию химического состава вещества во Вселенной до появления первых звёзд. К началу первичного нуклеосинтеза, через 3 минуты после Большого взрыва, соотношение нейтронов и протонов составляло 1 к 7. Через 20 минут после Большого взрыва первичный нуклеосинтез завершился: в барионной массе Вселенной стали доминировать водород (75% массы) и гелий (25% массы). В меньшем количестве образовались дейтерий, гелий-3 и литий-7, другие же элементы сформировались в незначительном количестве. Наблюдаемое содержание различных элементов достаточно хорошо сходится с теоретически предсказанным, за исключением содержания лития-7. Несмотря на это исключение, считается, что реальная распространённость химических элементов хорошо описывается существующей теорией и свидетельствует о правильности современных представлений о Большом взрыве.
rdf:langString Em Cosmologia, a nucleossíntese primordial (ou nucleossíntese do Big Bang) se refere a um período de 10 segundos a 20 minutos que se iniciou após o Big Bang, durante o qual foram formados alguns elementos químicos leves: o abundante hidrogênio-1 (1H), também conhecido como prótio, seu isótopo, o deutério (2H ou D), os isótopos hélio-3 (3He), hélio-4 (4He) e lítio-7 (7Li). Além desses núcleos estáveis foram também produzidos dois isótopos instáveis: o trítio (3H) e o berílio-7 (7Be).
rdf:langString Big bang-nukleosyntes (även primordial nukleosyntes eller primordiell nukleosyntes) avser produktionen av atomkärnor tyngre än 1H (det vill säga protonen, den vanliga, lätta, väteisotopen) under universums tidiga faser enligt den gällande kosmologiska standardmodellen. Denna nukleosyntes skedde endast minuter efter själva big bang och anses ha skapat den tyngre väteisotopen kallad deuterium (2H eller D), heliumisotoperna 3He och 4He, samt litiumisotoperna 6Li och 7Li. Förutom dessa stabila kärnor skapades några instabila, radioaktiva, isotoper: tritium (3H); beryllium-7 (7Be), och beryllium-8 (8Be). Dessa instabila kärnor föll antingen isär eller genomgick fusion med andra kärnor och bildade stabila isotoper. Teorin förutsäger ett massförhållande av 25 % helium och 75 % väte plus mindre mängder av övriga. Detta stämmer också väl med mätningar utom för litium.
rdf:langString 太初核合成(Big Bang nucleosynthesis,縮寫為BBN,也稱為primordial nucleosynthesis、archeonucleosynthesis、 archonucleosynthesis、protonucleosynthesis或paleonucleosynthesis)是物理宇宙學敘述宇宙在早期階段產生核的過程,產生的是最輕的氫的同位素H-1(氫-1,1H是有一個質子做為核)。大多數宇宙學家認為,原始的核合成發生在大爆炸後大約10秒到20分鐘的時間間隔內,同時根據計算,宇宙中大部分氦的形成是氦的同位素氦-4(4He),以及少量的氫的同位素氘(2H或D),氦的同位素氦-3(3He),以即少量的鋰-7(7Li)。除了這些穩定的核之外,還產生了兩種不穩定的放射性同位素:氫的同位素氚(重氫,3H或T);和鈹的同位素鈹-7(7鈹);但這些不穩定的同位素後來分別衰變為如前所述的氦-3(3He)和鋰-7(7Li)。 基本上,所有比鋰重的元素都是在很久以後,在恆星演化和爆炸中通過恒星核合成產生的。
rdf:langString Первинний нуклеосинтез — початкова стадія нуклеосинтезу. Він відбувся у перші три хвилини після Великого вибуху. Впродовж цієї стадії утворилися легкі елементи — протій ≈77%, гелій-4 (≈23 %), гелій-3 (3×10-4 %), дейтерій (5×10-5 %) та літій-7 (5×10-10 %).
xsd:nonNegativeInteger 33899

data from the linked data cloud