Zorn's lemma

http://dbpedia.org/resource/Zorn's_lemma an entity of type: Thing

Princip maximality, označovaný také někdy zkratkou PM a mimo teorii množin známější jako Zornovo lemma, je tvrzení z teorie množin, konkrétněji z teorie uspořádání, které se zabývá existencí maximálních prvků v uspořádané množině. rdf:langString
Το λήμμα του Τσορν, από τους μαθηματικούς και , είναι ένα αποδεικτικό εργαλείο που εξυπηρετεί παρόμοιες ανάγκες όπως η Μαθηματική επαγωγή. Το λήμμα διατυπώνει ότι ένας μερικώς διατεταγμένος χώρος, με κάθε αλυσίδα του (δηλαδή κάθε πλήρως διατεταγμένο υποσύνολό του) να έχει άνω φράγμα, τότε έχει μεγιστικό στοιχείο. rdf:langString
集合論においてツォルンの補題(ツォルンのほだい、英: Zorn's lemma)またはクラトフスキ・ツォルンの補題(クラトフスキ・ツォルンのほだい)とは次の定理をいう。 命題 (Zorn の補題)半順序集合Pは、その全ての鎖(つまり、全順序部分集合)がPに上界を持つとする。このとき、Pは少なくともひとつの極大元を持つ。 この定理は数学者マックス・ツォルンとカジミェシュ・クラトフスキに因む。選択公理と同値な命題の一つ。 rdf:langString
Il lemma di Zorn afferma che: «Se è un insieme non vuoto su cui è definita una relazione d'ordine parziale tale che ogni sua catena possiede un maggiorante in , allora contiene almeno un elemento massimale.» Il lemma di Zorn è equivalente all'assioma della scelta e al teorema del buon ordinamento, ma la sua peculiare formulazione risulta di maggior utilità in moltissime dimostrazioni. rdf:langString
Het lemma van Zorn, ook bekend als het lemma van Kuratowski-Zorn, is een bewering uit de verzamelingenleer. Het lemma is genoemd naar de wiskundigen Max Zorn en Kazimierz Kuratowski. rdf:langString
수학에서 초른 보조정리(Zorn의補助定理, 영어: Zorn’s lemma) 또는 쿠라토프스키-초른 보조정리(Kuratowski-Zorn補助定理, 영어: Kuratowski–Zorn lemma)는 부분 순서 집합이 극대 원소를 가질 충분조건을 제시하는 보조정리다. 선택 공리와 동치이다. rdf:langString
O Lema de Zorn é um axioma da Teoria dos Conjuntos, normalmente apresentado como: Se, em um conjunto não-vazio e parcialmente ordenado, todo subconjunto totalmente ordenado tem uma quota superior, então o conjunto tem um elemento maximal. O Lema de Zorn é equivalente ao axioma da escolha. O nome faz referência ao matemático Max Zorn, mas sua primeira formulação se deve ao matemático polonês Kazimierz Kuratowski. rdf:langString
Zorns lemma är inom mängdläran, en sats av fundamental betydelse. Lemmat används till exempel för att visa existens av maximalideal i ringar, baser i vektorrum samt i många andra fall när urvalsaxiomet behövs i ett existensbevis. Troligen är Zorns lemma den vanligaste formen av urvalsaxiomet i matematiska bevis. För att kunna förstå Zorns lemma introduceras några begrepp som är av vikt även utanför denna artikel. rdf:langString
Лема Цорна (лема Куратовського — Цорна, аксіома Цорна) — одне з тверджень теорії множин еквівалентне аксіомі вибору. Названа на честь німецького математика . Лема: Нехай (P,≤) — деяка частково впорядкована множина. Якщо кожна лінійно впорядкована підмножина T має верхню межу, то P має максимальний елемент. rdf:langString
佐恩引理(Zorn's Lemma)也被称为库拉托夫斯基-佐恩(Kuratowski-Zorn)引理,是集合论中一个重要的定理,其陳述為: 在任何一非空的偏序集中,若任何链(即全序的子集)都有上界,則此偏序集内必然存在(至少一枚)极大元。 佐恩引理是以数学家马克斯·佐恩的名字命名的。 具体来说,假设是一个偏序集,它的一个子集称为是一个全序子集,如果对于任意的有或。而称为是有上界的,如果中存在一个元素,使得对于任意的,都有。在上述定义中,并不要求一定是中的元素。而一个元素称为是極大的,如果且,则必然有。 佐恩引理、良序定理和选择公理彼此等价,在集合论的Zermelo-Fraenkel公理基础上,上述三者中从任一出发均可推得另外两个。佐恩引理在数学的各个分支中都有重要地位,例如在证明泛函分析的哈恩-巴拿赫定理(Hahn-Banach Theorem),證明任一向量空间必有基,拓扑学中证明紧空间的乘积空间仍为紧空间的吉洪诺夫定理,和抽象代数中证明任何含幺环的真理想必然包含于一个极大理想和任何域必然有代数闭包的过程中,佐恩引理都是关键。 rdf:langString
El lema de Zorn o axioma de Zorn és un enunciat en teoria de conjunts, equivalent a l'axioma de l'elecció, que sovint s'usa per demostrar l'existència d'un objecte matemàtic que no es pot obtenir explícitament. El seu nom prové del matemàtic Max Zorn. La formulació més curta és que cada conjunt ordenat inductivament té un element maximal o, cosa que és el mateix, cada conjunt parcialment ordenat en el que cada cadena (i.e. un subconjunt totalment ordenat) té una cota superior, conté com a mínim un element maximal. rdf:langString
Das Lemma von Zorn, auch bekannt als Lemma von Kuratowski-Zorn oder Zornsches Lemma, ist ein Theorem der Mengenlehre, genauer gesagt, der Zermelo-Fraenkel-Mengenlehre, die das Auswahlaxiom einbezieht. Es besagt, dass jede induktiv geordnete Menge mindestens ein maximales Element besitzt. Das Lemma ist benannt nach dem deutsch-amerikanischen Mathematiker Max Zorn, der es 1933 entdeckte (unabhängig von der Entdeckung durch Kuratowski 1922.), und verwandt mit Hausdorffs Maximalkettensatz von 1914. rdf:langString
El lema de Zorn, también llamado de Kuratowski-Zorn, es una proposición de la teoría de conjuntos que afirma lo siguiente: Todo conjunto parcialmente ordenado no vacío en el que toda cadena (subconjunto totalmente ordenado) tiene una cota superior, contiene al menos un elemento maximal. Debe su nombre al matemático Max Zorn. rdf:langString
En mathématiques, le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski-Zorn) est un théorème de la théorie des ensembles qui affirme que si un ensemble ordonné est tel que toute chaîne (sous-ensemble totalement ordonné) possède un majorant, alors il possède un élément maximal. Le lemme de Zorn est équivalent à l'axiome du choix en admettant les autres axiomes de la théorie des ensembles de Zermelo-Fraenkel. rdf:langString
Lemma Zorn, juga dikenal sebagai Kuratowski–Zorn lemma, diambil dari nama Max Zorn dan Kazimierz Kuratowski, adalah proposisi dari teori himpunan. Ini menyatakan bahwa berisi untuk setiap (yaitu, setiap himpunan bagian harus berisi setidaknya satu . rdf:langString
Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element. rdf:langString
Lemat Kuratowskiego-Zorna, lemat Zorna – twierdzenie teorii mnogości, nazywane zwyczajowo lematem, dające pewien warunek dostateczny istnienia elementu maksymalnego w danym zbiorze częściowo uporządkowanym; znajduje ono wiele zastosowań w pozostałych działach matematyki, gdzie wykorzystywane jest w dowodach istnienia różnych obiektów (gdy szukany element, którego istnienie jest postulowane, jest maksymalnym w pewnym zbiorze z częściowym porządkiem). rdf:langString
Лемма Цорна (иногда лемма Куратовского — Цорна) — одно из утверждений, эквивалентных аксиоме выбора, наряду с теоремой Цермело (принципом вполнеупорядочивания) и принципом максимума Хаусдорфа (который, по сути, является альтернативной формулировкой леммы Цорна). Носит имя немецкого математика Макса Цорна, часто упоминается также под именем польского математика Казимира Куратовского, сформулировавшего близкое утверждение раньше. rdf:langString
rdf:langString Lema de Zorn
rdf:langString Princip maximality
rdf:langString Lemma von Zorn
rdf:langString Λήμμα του Τσορν
rdf:langString Lema de Zorn
rdf:langString Lemma Zorn
rdf:langString Lemma di Zorn
rdf:langString Lemme de Zorn
rdf:langString 초른 보조정리
rdf:langString ツォルンの補題
rdf:langString Lemma van Zorn
rdf:langString Lemat Kuratowskiego-Zorna
rdf:langString Lema de Zorn
rdf:langString Лемма Цорна
rdf:langString Zorn's lemma
rdf:langString Zorns lemma
rdf:langString 佐恩引理
rdf:langString Лема Цорна
xsd:integer 51442
xsd:integer 1108318380
rdf:langString p/z099330
rdf:langString If you are building a mathematical object in stages and find that you have not finished even after infinitely many stages, and there seems to be nothing to stop you continuing to build, then Zorn’s lemma may well be able to help you.
rdf:langString Zorn lemma
rdf:langString "How to use Zorn’s lemma"
rdf:langString El lema de Zorn o axioma de Zorn és un enunciat en teoria de conjunts, equivalent a l'axioma de l'elecció, que sovint s'usa per demostrar l'existència d'un objecte matemàtic que no es pot obtenir explícitament. El seu nom prové del matemàtic Max Zorn. La formulació més curta és que cada conjunt ordenat inductivament té un element maximal o, cosa que és el mateix, cada conjunt parcialment ordenat en el que cada cadena (i.e. un subconjunt totalment ordenat) té una cota superior, conté com a mínim un element maximal. A continuació concretarem la definició d'aquests termes. Suposem que (P,≤) és un conjunt parcialment ordenat. Un subconjunt seu T és totalment ordenat si per a qualssevol s, t elements de T es dona alguna de les comparacions s ≤ t o bé t ≤ s. Aquest conjunt T té una cota superior u de P si t ≤ u per a tot t dins de T. Observeu que u és un element de P però no cal que sigui element de la cadena T. Finalment, un element maximal de P és un element m dins de P tal que no hi ha cap altre element x de P que sigui diferent de m i faci m ≤ x.
rdf:langString Princip maximality, označovaný také někdy zkratkou PM a mimo teorii množin známější jako Zornovo lemma, je tvrzení z teorie množin, konkrétněji z teorie uspořádání, které se zabývá existencí maximálních prvků v uspořádané množině.
rdf:langString Το λήμμα του Τσορν, από τους μαθηματικούς και , είναι ένα αποδεικτικό εργαλείο που εξυπηρετεί παρόμοιες ανάγκες όπως η Μαθηματική επαγωγή. Το λήμμα διατυπώνει ότι ένας μερικώς διατεταγμένος χώρος, με κάθε αλυσίδα του (δηλαδή κάθε πλήρως διατεταγμένο υποσύνολό του) να έχει άνω φράγμα, τότε έχει μεγιστικό στοιχείο.
rdf:langString Das Lemma von Zorn, auch bekannt als Lemma von Kuratowski-Zorn oder Zornsches Lemma, ist ein Theorem der Mengenlehre, genauer gesagt, der Zermelo-Fraenkel-Mengenlehre, die das Auswahlaxiom einbezieht. Es besagt, dass jede induktiv geordnete Menge mindestens ein maximales Element besitzt. Das Lemma ist benannt nach dem deutsch-amerikanischen Mathematiker Max Zorn, der es 1933 entdeckte (unabhängig von der Entdeckung durch Kuratowski 1922.), und verwandt mit Hausdorffs Maximalkettensatz von 1914. Die Zuschreibung an Zorn erfolgte schon in der Ausgabe der Mengenlehre von Bourbaki (als Theorem von Zorn, verfasst von Claude Chevalley, der Zorn aus seiner Zeit bei Emil Artin in Hamburg Anfang der 1930er Jahre kannte) von 1939, die Bezeichnung Lemma erfolgte in einer Veröffentlichung von John W. Tukey (1940). Es gab noch verschiedene andere Autoren (neben den erwähnten Hausdorff und Kuratowski), die Maximum-Prinzipien veröffentlichten, die aus dem Auswahlaxiom oder dem Wohlordnungssatz folgten (wie Salomon Bochner 1928, R. L. Moore 1932). Zorn vermutete aber zuerst (in seiner Arbeit von 1935), dass Auswahlaxiom, Wohlordnungssatz und Zornsches Lemma (das er Maximum-Prinzip nannte) äquivalent sind, und kündigte einen Beweis in einer Folgearbeit an, die nie erschien.
rdf:langString El lema de Zorn, también llamado de Kuratowski-Zorn, es una proposición de la teoría de conjuntos que afirma lo siguiente: Todo conjunto parcialmente ordenado no vacío en el que toda cadena (subconjunto totalmente ordenado) tiene una cota superior, contiene al menos un elemento maximal. Debe su nombre al matemático Max Zorn. Los términos se definen como sigue. Supóngase que (P, ≤) es un conjunto parcialmente ordenado. Un subconjunto T de P es totalmente ordenado si para cualquier s, t ∈ T se tiene s ≤ t o t ≤ s. Tal conjunto T tiene una cota superior u ∈ P si t ≤ u para cualquier t ∈ T; no se necesita que u sea miembro de T. Un elemento m ∈ P es maximal si el único x ∈ P tal que m ≤ x es m mismo. Al igual que el teorema del buen orden, el lema de Zorn es equivalente al axioma de elección, en el sentido de que cualquiera de ellos, junto con los axiomas de Zermelo-Fraenkel, basta para probar los otros. Aparece en las demostraciones de varios teoremas importantes, tales como el teorema de Hahn-Banach en análisis funcional, el teorema de que todo espacio vectorial tiene una base, el teorema de Tychonoff en topología, y los teoremas en álgebra abstracta que afirman que todo anillo con elemento unitario tiene un ideal maximal y que todo cuerpo tiene clausura algebraica.
rdf:langString En mathématiques, le lemme de Zorn (ou théorème de Zorn, ou parfois lemme de Kuratowski-Zorn) est un théorème de la théorie des ensembles qui affirme que si un ensemble ordonné est tel que toute chaîne (sous-ensemble totalement ordonné) possède un majorant, alors il possède un élément maximal. Le lemme de Zorn est équivalent à l'axiome du choix en admettant les autres axiomes de la théorie des ensembles de Zermelo-Fraenkel. Le lemme de Zorn permet d'utiliser l'axiome du choix sans recourir à la théorie des ordinaux (ou à celle des bons ordres via le théorème de Zermelo). En effet, sous les hypothèses du lemme de Zorn, on peut obtenir un élément maximal par une définition par récurrence transfinie, la fonction itérée étant obtenue par axiome du choix. Cependant, les constructions par récurrence transfinie sont parfois plus intuitives (quoique plus longues) et plus informatives. Le lemme de Zorn a des applications aussi bien en topologie, comme le théorème de Tychonov, qu'en analyse fonctionnelle, comme le théorème de Hahn-Banach, ou en algèbre, comme le théorème de Krull ou l'existence d'une clôture algébrique. Il doit son nom au mathématicien Max Zorn qui, dans un article de 1935, en donnait le premier un grand nombre d'applications, en redémontrant des résultats connus d'algèbre. Cependant Kazimierz Kuratowski en avait déjà publié une version en 1922, et plusieurs mathématiciens, à commencer par Felix Hausdorff en 1907, avaient introduit des principes de maximalité proches du lemme de Zorn.
rdf:langString Lemma Zorn, juga dikenal sebagai Kuratowski–Zorn lemma, diambil dari nama Max Zorn dan Kazimierz Kuratowski, adalah proposisi dari teori himpunan. Ini menyatakan bahwa berisi untuk setiap (yaitu, setiap himpunan bagian harus berisi setidaknya satu . Dibuktikan oleh Kuratowski pada tahun 1922 dan secara independen oleh Zorn pada tahun 1935, ini lemma muncul dalam bukti beberapa teorema yang sangat penting, misalnya dalam analisis fungsional, teorema bahwa setiap ruang vektor memiliki , dalam topologi yang menyatakan bahwa setiap hasil kali ruang kompak adalah kompak, dan teorema dalam aljabar abstrak bahwa dalam cincin dengan identitas setiap ideal yang tepat terkandung dalam dan bahwa setiap bidang memiliki . Lemma Zorn setara dengan dan juga aksioma pilihan, dalam arti bahwa salah satu dari ketiganya, bersama dengan dari teori himpunan, cukup untuk membuktikan dua lainnya. Rumusan awal dari lemma Zorn adalah yang menyatakan bahwa setiap total himpunan bagian dari himpunan berurutan sebagian terdapat dalam himpunan bagian terurut total maksimal dari himpunan order sebagian.
rdf:langString 集合論においてツォルンの補題(ツォルンのほだい、英: Zorn's lemma)またはクラトフスキ・ツォルンの補題(クラトフスキ・ツォルンのほだい)とは次の定理をいう。 命題 (Zorn の補題)半順序集合Pは、その全ての鎖(つまり、全順序部分集合)がPに上界を持つとする。このとき、Pは少なくともひとつの極大元を持つ。 この定理は数学者マックス・ツォルンとカジミェシュ・クラトフスキに因む。選択公理と同値な命題の一つ。
rdf:langString Il lemma di Zorn afferma che: «Se è un insieme non vuoto su cui è definita una relazione d'ordine parziale tale che ogni sua catena possiede un maggiorante in , allora contiene almeno un elemento massimale.» Il lemma di Zorn è equivalente all'assioma della scelta e al teorema del buon ordinamento, ma la sua peculiare formulazione risulta di maggior utilità in moltissime dimostrazioni.
rdf:langString Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element. The lemma was proved (assuming the axiom of choice) by Kazimierz Kuratowski in 1922 and independently by Max Zorn in 1935. It occurs in the proofs of several theorems of crucial importance, for instance the Hahn–Banach theorem in functional analysis, the theorem that every vector space has a basis, Tychonoff's theorem in topology stating that every product of compact spaces is compact, and the theorems in abstract algebra that in a ring with identity every proper ideal is contained in a maximal ideal and that every field has an algebraic closure. Zorn's lemma is equivalent to the well-ordering theorem and also to the axiom of choice, in the sense that within ZF (Zermelo–Fraenkel set theory without the axiom of choice) any one of the three is sufficient to prove the other two. An earlier formulation of Zorn's lemma is Hausdorff's maximum principle which states that every totally ordered subset of a given partially ordered set is contained in a maximal totally ordered subset of that partially ordered set.
rdf:langString Het lemma van Zorn, ook bekend als het lemma van Kuratowski-Zorn, is een bewering uit de verzamelingenleer. Het lemma is genoemd naar de wiskundigen Max Zorn en Kazimierz Kuratowski.
rdf:langString 수학에서 초른 보조정리(Zorn의補助定理, 영어: Zorn’s lemma) 또는 쿠라토프스키-초른 보조정리(Kuratowski-Zorn補助定理, 영어: Kuratowski–Zorn lemma)는 부분 순서 집합이 극대 원소를 가질 충분조건을 제시하는 보조정리다. 선택 공리와 동치이다.
rdf:langString Lemat Kuratowskiego-Zorna, lemat Zorna – twierdzenie teorii mnogości, nazywane zwyczajowo lematem, dające pewien warunek dostateczny istnienia elementu maksymalnego w danym zbiorze częściowo uporządkowanym; znajduje ono wiele zastosowań w pozostałych działach matematyki, gdzie wykorzystywane jest w dowodach istnienia różnych obiektów (gdy szukany element, którego istnienie jest postulowane, jest maksymalnym w pewnym zbiorze z częściowym porządkiem). Lemat ten został sformułowany przez Kazimierza Kuratowskiego w 1922 roku oraz niezależnie przez Maxa Zorna w 1935 roku. Jest on równoważny aksjomatowi wyboru – każdy z nich można udowodnić przy pomocy drugiego (na gruncie aksjomatyki Zermela-Fraenkla teorii mnogości) – przy czym jest to jedna z bardziej użytecznych jego postaci (zob. pozostałe). Istnieją również dowody wykorzystujące równoważniki aksjomatu wyboru, np. twierdzenie Zermela, czy twierdzenie Hausdorffa o łańcuchu maksymalnym.
rdf:langString O Lema de Zorn é um axioma da Teoria dos Conjuntos, normalmente apresentado como: Se, em um conjunto não-vazio e parcialmente ordenado, todo subconjunto totalmente ordenado tem uma quota superior, então o conjunto tem um elemento maximal. O Lema de Zorn é equivalente ao axioma da escolha. O nome faz referência ao matemático Max Zorn, mas sua primeira formulação se deve ao matemático polonês Kazimierz Kuratowski.
rdf:langString Zorns lemma är inom mängdläran, en sats av fundamental betydelse. Lemmat används till exempel för att visa existens av maximalideal i ringar, baser i vektorrum samt i många andra fall när urvalsaxiomet behövs i ett existensbevis. Troligen är Zorns lemma den vanligaste formen av urvalsaxiomet i matematiska bevis. För att kunna förstå Zorns lemma introduceras några begrepp som är av vikt även utanför denna artikel.
rdf:langString Лема Цорна (лема Куратовського — Цорна, аксіома Цорна) — одне з тверджень теорії множин еквівалентне аксіомі вибору. Названа на честь німецького математика . Лема: Нехай (P,≤) — деяка частково впорядкована множина. Якщо кожна лінійно впорядкована підмножина T має верхню межу, то P має максимальний елемент.
rdf:langString 佐恩引理(Zorn's Lemma)也被称为库拉托夫斯基-佐恩(Kuratowski-Zorn)引理,是集合论中一个重要的定理,其陳述為: 在任何一非空的偏序集中,若任何链(即全序的子集)都有上界,則此偏序集内必然存在(至少一枚)极大元。 佐恩引理是以数学家马克斯·佐恩的名字命名的。 具体来说,假设是一个偏序集,它的一个子集称为是一个全序子集,如果对于任意的有或。而称为是有上界的,如果中存在一个元素,使得对于任意的,都有。在上述定义中,并不要求一定是中的元素。而一个元素称为是極大的,如果且,则必然有。 佐恩引理、良序定理和选择公理彼此等价,在集合论的Zermelo-Fraenkel公理基础上,上述三者中从任一出发均可推得另外两个。佐恩引理在数学的各个分支中都有重要地位,例如在证明泛函分析的哈恩-巴拿赫定理(Hahn-Banach Theorem),證明任一向量空间必有基,拓扑学中证明紧空间的乘积空间仍为紧空间的吉洪诺夫定理,和抽象代数中证明任何含幺环的真理想必然包含于一个极大理想和任何域必然有代数闭包的过程中,佐恩引理都是关键。
rdf:langString Лемма Цорна (иногда лемма Куратовского — Цорна) — одно из утверждений, эквивалентных аксиоме выбора, наряду с теоремой Цермело (принципом вполнеупорядочивания) и принципом максимума Хаусдорфа (который, по сути, является альтернативной формулировкой леммы Цорна). Носит имя немецкого математика Макса Цорна, часто упоминается также под именем польского математика Казимира Куратовского, сформулировавшего близкое утверждение раньше. Формулировка: частично упорядоченное множество, в котором любая цепь имеет верхнюю грань, содержит максимальный элемент. Существует ряд эквивалентных альтернативных формулировок.
xsd:nonNegativeInteger 25286

data from the linked data cloud