Zhegalkin polynomial

http://dbpedia.org/resource/Zhegalkin_polynomial

Los polinomios de Zhegalkin son una representación de funciones en álgebra booleana. Introducido por el matemático ruso Ivan Ivanovich Zhegalkin en 1927, Ellos son los anillos de polinomios sobre la equivalencia del módulo n. Las degeneraciones resultantes de la aritmética modular dan como resultado que los polinomios de Zhegalkin sean más simples que los polinomios ordinarios y no requieran coeficientes ni exponentes. Los coeficientes son redundantes porque 1 es el único coeficiente distinto de cero. Los exponentes son redundantes porque en aritmética mod 2, x2 = x. Por lo tanto, un polinomio como 3x2y5z es congruente y, por lo tanto, puede reescribirse como, xyz. rdf:langString
Zhegalkin (also Žegalkin, Gégalkine or Shegalkin) polynomials (Russian: полиномы Жегалкина), also known as algebraic normal form, are a representation of functions in Boolean algebra. Introduced by the Russian mathematician Ivan Ivanovich Zhegalkin in 1927, they are the polynomial ring over the integers modulo 2. The resulting degeneracies of modular arithmetic result in Zhegalkin polynomials being simpler than ordinary polynomials, requiring neither coefficients nor exponents. Coefficients are redundant because 1 is the only nonzero coefficient. Exponents are redundant because in arithmetic mod 2, x2 = x. Hence a polynomial such as 3x2y5z is congruent to, and can therefore be rewritten as, xyz. rdf:langString
Полином Жегалкина — многочлен над полем , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения — исключающее или. Полином был предложен в 1927 году Иваном Жегалкиным в качестве удобного средства для представления функций булевой логики. В зарубежной литературе представление в виде полинома Жегалкина обычно называется алгебраической нормальной формой (АНФ). Теорема Жегалкина — утверждение о существовании и единственности представления всякой булевой функции в виде полинома Жегалкина. или в более формализованном виде как rdf:langString
Поліном Жегалкіна — довільна формула алгебри Жегалкіна, яка має вигляд суми кон'юнкцій булевих змінних. Поліном був запропонований в 1927 році Жегалкіним Іваном Івановичем, для зручного представлення булевих функцій алгебри логіки. В зарубіжній літературі представлення полінома Жегалкіна зазвичай називається алгебраїчною нормальною формою (АНФ). Якщо у кожний член поліному Жегалкіна кожна змінна входить один раз та поліном не містить однакових членів, то такий поліном Жегалкіна називається канонічним. або в більш формальному Приклади поліному Жегалкіна: rdf:langString
rdf:langString Polinomio de Zhegalkin
rdf:langString Polinômio de Zhegalkin
rdf:langString Полином Жегалкина
rdf:langString Zhegalkin polynomial
rdf:langString Поліном Жегалкіна
xsd:integer 12152471
xsd:integer 1124582620
rdf:langString y
rdf:langString March 2021
rdf:langString "nb"
rdf:langString Los polinomios de Zhegalkin son una representación de funciones en álgebra booleana. Introducido por el matemático ruso Ivan Ivanovich Zhegalkin en 1927, Ellos son los anillos de polinomios sobre la equivalencia del módulo n. Las degeneraciones resultantes de la aritmética modular dan como resultado que los polinomios de Zhegalkin sean más simples que los polinomios ordinarios y no requieran coeficientes ni exponentes. Los coeficientes son redundantes porque 1 es el único coeficiente distinto de cero. Los exponentes son redundantes porque en aritmética mod 2, x2 = x. Por lo tanto, un polinomio como 3x2y5z es congruente y, por lo tanto, puede reescribirse como, xyz.
rdf:langString Zhegalkin (also Žegalkin, Gégalkine or Shegalkin) polynomials (Russian: полиномы Жегалкина), also known as algebraic normal form, are a representation of functions in Boolean algebra. Introduced by the Russian mathematician Ivan Ivanovich Zhegalkin in 1927, they are the polynomial ring over the integers modulo 2. The resulting degeneracies of modular arithmetic result in Zhegalkin polynomials being simpler than ordinary polynomials, requiring neither coefficients nor exponents. Coefficients are redundant because 1 is the only nonzero coefficient. Exponents are redundant because in arithmetic mod 2, x2 = x. Hence a polynomial such as 3x2y5z is congruent to, and can therefore be rewritten as, xyz.
rdf:langString Полином Жегалкина — многочлен над полем , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения — исключающее или. Полином был предложен в 1927 году Иваном Жегалкиным в качестве удобного средства для представления функций булевой логики. В зарубежной литературе представление в виде полинома Жегалкина обычно называется алгебраической нормальной формой (АНФ). Теорема Жегалкина — утверждение о существовании и единственности представления всякой булевой функции в виде полинома Жегалкина. Полином Жегалкина представляет собой сумму по модулю два попарно различных произведений неинвертированных переменных, где ни в одном произведении ни одна переменная не встречается больше одного раза, а также (если необходимо) константы 1. Формально полином Жегалкина можно представить в виде или в более формализованном виде как Примеры полиномов Жегалкина:
rdf:langString Поліном Жегалкіна — довільна формула алгебри Жегалкіна, яка має вигляд суми кон'юнкцій булевих змінних. Поліном був запропонований в 1927 році Жегалкіним Іваном Івановичем, для зручного представлення булевих функцій алгебри логіки. В зарубіжній літературі представлення полінома Жегалкіна зазвичай називається алгебраїчною нормальною формою (АНФ). Якщо у кожний член поліному Жегалкіна кожна змінна входить один раз та поліном не містить однакових членів, то такий поліном Жегалкіна називається канонічним. Теорема Жегалкіна — стверджує існування і унікальність будь-якої булевої функції у вигляді поліному Жегалкіна. Формально поліном Жегалкіна можна представити у вигляді: або в більш формальному Приклади поліному Жегалкіна:
xsd:nonNegativeInteger 32726

data from the linked data cloud