Vieta's formulas
http://dbpedia.org/resource/Vieta's_formulas an entity of type: WikicatMathematicalTheorems
Viètovy vzorce, pojmenované po Françoisi Viètovi, jsou obecným návodem, který umožňuje hledání kořenů polynomů.
rdf:langString
En matemàtiques, més específicament en àlgebra, les fórmules de Viète, anomenades així en honor de François Viète, són fórmules que relacionen les arrels d'un polinomi amb els seus coeficients.
rdf:langString
في الرياضيات، وتحديداً في الجبر يطلق اسم صيغ فييتا (بالإنجليزية: Vieta's formulas) على الصيغ التي تربط جذور كثير حدود ما بمعاملاته. سميت هاته الصيغ هكذا نسبة إلى فرانسوا فييت.
rdf:langString
Der Satz von Vieta oder auch Wurzelsatz von Vieta ist ein mathematischer Lehrsatz aus der elementaren Algebra. Benannt ist er nach dem Mathematiker François Viète, der ihn in seinem postum erschienenen Werk „De aequationum recognitione et emendatione tractatus duo“ („Zwei Abhandlungen über die Untersuchung und Verbesserung von Gleichungen“) bewies.Der Satz macht eine Aussage über den Zusammenhang zwischen den Koeffizienten und den Lösungen einer algebraischen Gleichung.
rdf:langString
In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta").
rdf:langString
In matematica, più specificamente in algebra, le formule di Viète, denominate così da François Viète (1540-1603), sono formule che mettono in relazione le radici di un polinomio con i suoi coefficienti. Queste formule sono conosciute anche con il nome di formule di Viète-Girard poiché un importante contributo viene anche dal lavoro del matematico Albert Girard (1590-1633).
rdf:langString
In de wiskunde zijn de formules van Viète formules waarmee de coëfficiënten van een polynoom uitgedrukt worden in sommen en producten van de nulpunten. De formules zijn genoemd naar de 16e-eeuwse Franse wiskundige François Viète, vaak aangeduid met de gelatiniseerde vorm van z'n naam Franciscus Vieta. Viète stelde de formules op voor het geval van positieve nulpunten. Naar de mening van de 18e-eeuwse Britse wiskundige Charles Hutton werd het algemene principe het eerst begrepen door de 17e-eeuwse Franse wiskundige Albert Girard.
rdf:langString
根と係数の関係(こんとけいすうのかんけい)は、多項式における係数全体と根全体の間に成り立つ関係を、係数体上の式で表したものである。 x に関する n 次式 an xn + an−1 xn−1 + … + a1 x + a0 の根を α1, …, αn とする。(このとき an ≠ 0 である) とおくとき、 が成り立つ。これを根と係数の関係という。 は α1, …, αn に関する k 次基本対称式である。 特に次の式が成り立つ。 論の定理である。
rdf:langString
대수학에서 비에트 정리(영어: Viète’s theorem) 또는 근과 계수와의 관계는 다항 방정식의 근에 대한 기본 대칭 다항식과 다항 방정식의 계수 사이의 관계를 나타내는 일련의 공식이다.
rdf:langString
Wzory Viète’a – wzory wiążące pierwiastki wielomianu z jego współczynnikami. Ich nazwa pochodzi od nazwiska francuskiego matematyka François Viète’a, który podał je w 1591 roku.
rdf:langString
Em matemática, as fórmulas de Viète são fórmulas que relacionam os coeficientes de um polinômio a somas e produtos de suas raízes. Esta denominação deve-se a François Viète, e são usadas especialmente em álgebra.
rdf:langString
在數學上,韦达定理是一個公式 (英語:Vieta's formulas),給出多項式方程的根與係數的关系,因而又被代稱為根與係數。該定理由法國數學家弗朗索瓦·韋達發現,並因此得名。韋達定理常用於代數領域。 韋達定理的實用之處在於,它提供一個不用直接把根解出來的方法來計算根之間的關係。
rdf:langString
Формулы Виета — формулы, связывающие коэффициенты многочлена и его корни. Этими формулами удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням. Эти тождества неявно присутствуют в работах Франсуа Виета. Однако Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем виде.
rdf:langString
Теоре́ма Віє́та — формули, названі на честь Франсуа Вієта, що виражають коефіцієнти многочлена через його корені. Ці формули зручно використовувати для перевірки правильності знаходження коренів та для задання многочлена з визначеними властивостями.
rdf:langString
En matematiko, formuloj de Viète estas formuloj kiuj ligas koeficientoj de polinomo kun ĝiaj radikoj. La formuloj estas faritaj de François Viète. Estu polinomo kun radikoj , ĉiu radiko estas listigata en kvanto egala al ĝia obleco. Tiam la koeficientoj estas simetriaj funkcioj de la radikoj: ... Alivorte, egalas al sumo de ĉiuj eblaj produtoj de k radikoj (estas prenataj nur radikoj kun diversaj indeksoj). El la formuloj sekvas ke se ĉiuj radikoj estas entjeroj do ĉiuj koeficientoj estas entjeroj, kaj dividiĝas per ĉiu el la radikoj. Por kvadrata ekvacio ax2+bx+c=0 kun radikoj r1 kaj r2
rdf:langString
Sea el polinomio perteneciente a C[z], de grado k y coeficientes en el cuerpo ℂ de los números complejos, y sean sus k raíces (pertenecientes a C ), entonces se satisfacen exactamente las siguientes k distintas igualdades : Cada ecuación sumará todos los posibles productos que se formarán con j raíces y lo igualará el cociente (con su signo correspondiente) entre el coeficiente j-ésimo del polinomio y el coeficiente principal del polinomio.
rdf:langString
Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai). Il en résulte qu'un polynôme à coefficients complexes peut se réécrire : ,
rdf:langString
Dalam matematika, rumus Vieta adalah rumus antara koefisien pada polinomial bersama angka dan hasil nilai akarnya. Ditemukan oleh François Viète rumus tersebut digunakan secara khusus dalam aljabar. François Viète mendefinisikan rumus tersebut untuk kasus menemukan akar positif. Di masa François Viète, diyakini bahwa hanya ada akar positif dalam persamaan. François Viète percaya bahwa tidak ada akar negatif dan hanya memahami sebagian hubungan antara akar persamaan dan koefisiennya. Pada 1629, matematikawan asal Prancis , menemukan Rumus Vieta bersifat umum, tidak terbatas pada akar nyata positif .
rdf:langString
rdf:langString
صيغ فييت (جذور)
rdf:langString
Fórmules de Viète
rdf:langString
Viètovy vzorce
rdf:langString
Satz von Vieta
rdf:langString
Formuloj de Viète
rdf:langString
Relaciones de Cardano-Vieta
rdf:langString
Relations entre coefficients et racines
rdf:langString
Rumus Vieta
rdf:langString
Formule di Viète
rdf:langString
根と係数の関係
rdf:langString
비에트 정리
rdf:langString
Formules van Viète
rdf:langString
Fórmulas de Viète
rdf:langString
Wzory Viète’a
rdf:langString
Формулы Виета
rdf:langString
Vieta's formulas
rdf:langString
Теорема Вієта
rdf:langString
韦达定理
xsd:integer
714050
xsd:integer
1123042666
rdf:langString
p/v096630
rdf:langString
Viète theorem
rdf:langString
Viètovy vzorce, pojmenované po Françoisi Viètovi, jsou obecným návodem, který umožňuje hledání kořenů polynomů.
rdf:langString
En matemàtiques, més específicament en àlgebra, les fórmules de Viète, anomenades així en honor de François Viète, són fórmules que relacionen les arrels d'un polinomi amb els seus coeficients.
rdf:langString
في الرياضيات، وتحديداً في الجبر يطلق اسم صيغ فييتا (بالإنجليزية: Vieta's formulas) على الصيغ التي تربط جذور كثير حدود ما بمعاملاته. سميت هاته الصيغ هكذا نسبة إلى فرانسوا فييت.
rdf:langString
Der Satz von Vieta oder auch Wurzelsatz von Vieta ist ein mathematischer Lehrsatz aus der elementaren Algebra. Benannt ist er nach dem Mathematiker François Viète, der ihn in seinem postum erschienenen Werk „De aequationum recognitione et emendatione tractatus duo“ („Zwei Abhandlungen über die Untersuchung und Verbesserung von Gleichungen“) bewies.Der Satz macht eine Aussage über den Zusammenhang zwischen den Koeffizienten und den Lösungen einer algebraischen Gleichung.
rdf:langString
En matematiko, formuloj de Viète estas formuloj kiuj ligas koeficientoj de polinomo kun ĝiaj radikoj. La formuloj estas faritaj de François Viète. Estu polinomo kun radikoj , ĉiu radiko estas listigata en kvanto egala al ĝia obleco. Tiam la koeficientoj estas simetriaj funkcioj de la radikoj: ... Alivorte, egalas al sumo de ĉiuj eblaj produtoj de k radikoj (estas prenataj nur radikoj kun diversaj indeksoj). El la formuloj sekvas ke se ĉiuj radikoj estas entjeroj do ĉiuj koeficientoj estas entjeroj, kaj dividiĝas per ĉiu el la radikoj. Se la koeficiento , do por uzo de la formulo necesas dividi la tutan polinomon je , tiam la radikoj ne ŝanĝiĝas. Por kvadrata ekvacio ax2+bx+c=0 kun radikoj r1 kaj r2
rdf:langString
Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai). Il en résulte qu'un polynôme à coefficients complexes peut se réécrire : , avec les racines de , éventuellement multiples. Les relations entre les coefficients et les racines portent le nom de François Viète, le premier à les avoir énoncées dans le cas de racines positives.
rdf:langString
Sea el polinomio perteneciente a C[z], de grado k y coeficientes en el cuerpo ℂ de los números complejos, y sean sus k raíces (pertenecientes a C ), entonces se satisfacen exactamente las siguientes k distintas igualdades : Cada ecuación sumará todos los posibles productos que se formarán con j raíces y lo igualará el cociente (con su signo correspondiente) entre el coeficiente j-ésimo del polinomio y el coeficiente principal del polinomio. Estas relaciones sirven sobre todo para obtener determinados polinomios conocidas sus raíces. Cabe destacar que si conocemos k raíces de un polinomio de grado k, podremos encontrar a partir de estas relaciones un único polinomio de grado k que posea estas raíces (a menos de una constante multiplicativa).
rdf:langString
Dalam matematika, rumus Vieta adalah rumus antara koefisien pada polinomial bersama angka dan hasil nilai akarnya. Ditemukan oleh François Viète rumus tersebut digunakan secara khusus dalam aljabar. François Viète mendefinisikan rumus tersebut untuk kasus menemukan akar positif. Di masa François Viète, diyakini bahwa hanya ada akar positif dalam persamaan. François Viète percaya bahwa tidak ada akar negatif dan hanya memahami sebagian hubungan antara akar persamaan dan koefisiennya. Pada 1629, matematikawan asal Prancis , menemukan Rumus Vieta bersifat umum, tidak terbatas pada akar nyata positif . Ada juga spekulasi bahwa formula Viete sebenarnya ditemukan oleh Albert Girard sebelum François Viète. Misalnya, menurut matematikawan asal Inggris pada abad ke-18 , Albert Girard menulis tentang keadaan umum rumus Vieta dalam karyanya sebelum François Viète.
rdf:langString
In mathematics, Vieta's formulas relate the coefficients of a polynomial to sums and products of its roots. They are named after François Viète (more commonly referred to by the Latinised form of his name, "Franciscus Vieta").
rdf:langString
In matematica, più specificamente in algebra, le formule di Viète, denominate così da François Viète (1540-1603), sono formule che mettono in relazione le radici di un polinomio con i suoi coefficienti. Queste formule sono conosciute anche con il nome di formule di Viète-Girard poiché un importante contributo viene anche dal lavoro del matematico Albert Girard (1590-1633).
rdf:langString
In de wiskunde zijn de formules van Viète formules waarmee de coëfficiënten van een polynoom uitgedrukt worden in sommen en producten van de nulpunten. De formules zijn genoemd naar de 16e-eeuwse Franse wiskundige François Viète, vaak aangeduid met de gelatiniseerde vorm van z'n naam Franciscus Vieta. Viète stelde de formules op voor het geval van positieve nulpunten. Naar de mening van de 18e-eeuwse Britse wiskundige Charles Hutton werd het algemene principe het eerst begrepen door de 17e-eeuwse Franse wiskundige Albert Girard.
rdf:langString
根と係数の関係(こんとけいすうのかんけい)は、多項式における係数全体と根全体の間に成り立つ関係を、係数体上の式で表したものである。 x に関する n 次式 an xn + an−1 xn−1 + … + a1 x + a0 の根を α1, …, αn とする。(このとき an ≠ 0 である) とおくとき、 が成り立つ。これを根と係数の関係という。 は α1, …, αn に関する k 次基本対称式である。 特に次の式が成り立つ。 論の定理である。
rdf:langString
대수학에서 비에트 정리(영어: Viète’s theorem) 또는 근과 계수와의 관계는 다항 방정식의 근에 대한 기본 대칭 다항식과 다항 방정식의 계수 사이의 관계를 나타내는 일련의 공식이다.
rdf:langString
Wzory Viète’a – wzory wiążące pierwiastki wielomianu z jego współczynnikami. Ich nazwa pochodzi od nazwiska francuskiego matematyka François Viète’a, który podał je w 1591 roku.
rdf:langString
Em matemática, as fórmulas de Viète são fórmulas que relacionam os coeficientes de um polinômio a somas e produtos de suas raízes. Esta denominação deve-se a François Viète, e são usadas especialmente em álgebra.
rdf:langString
在數學上,韦达定理是一個公式 (英語:Vieta's formulas),給出多項式方程的根與係數的关系,因而又被代稱為根與係數。該定理由法國數學家弗朗索瓦·韋達發現,並因此得名。韋達定理常用於代數領域。 韋達定理的實用之處在於,它提供一個不用直接把根解出來的方法來計算根之間的關係。
rdf:langString
Формулы Виета — формулы, связывающие коэффициенты многочлена и его корни. Этими формулами удобно пользоваться для проверки правильности нахождения корней многочлена, а также для составления многочлена по заданным корням. Эти тождества неявно присутствуют в работах Франсуа Виета. Однако Виет рассматривал только положительные вещественные корни, поэтому у него не было возможности записать эти формулы в общем виде.
rdf:langString
Теоре́ма Віє́та — формули, названі на честь Франсуа Вієта, що виражають коефіцієнти многочлена через його корені. Ці формули зручно використовувати для перевірки правильності знаходження коренів та для задання многочлена з визначеними властивостями.
xsd:nonNegativeInteger
7869