Variational Monte Carlo

http://dbpedia.org/resource/Variational_Monte_Carlo

In computational physics, variational Monte Carlo (VMC) is a quantum Monte Carlo method that applies the variational method to approximate the ground state of a quantum system. The basic building block is a generic wave function depending on some parameters . The optimal values of the parameters is then found upon minimizing the total energy of the system. In particular, given the Hamiltonian , and denoting with a many-body configuration, the expectation value of the energy can be written as: rdf:langString
計算物理学において、変分モンテカルロ法(へんぶんモンテカルロほう、英: variational Monte Carlo method, VMC)とは、量子系の基底状態を近似的に求めるための量子モンテカルロ法の一つで、変分法を用いる。 その基本的構成要素はなんらかのパラメータ に依存する一般化波動関数 である。このパラメータ について系のエネルギーを最小化するような最適値を探索する。 具体的には、ハミルトニアンを 、多体配座を と書くことにすると、エネルギー期待値は次のように書くことができる。 rdf:langString
rdf:langString 変分モンテカルロ法
rdf:langString Variational Monte Carlo
xsd:integer 8987340
xsd:integer 1119164603
rdf:langString 計算物理学において、変分モンテカルロ法(へんぶんモンテカルロほう、英: variational Monte Carlo method, VMC)とは、量子系の基底状態を近似的に求めるための量子モンテカルロ法の一つで、変分法を用いる。 その基本的構成要素はなんらかのパラメータ に依存する一般化波動関数 である。このパラメータ について系のエネルギーを最小化するような最適値を探索する。 具体的には、ハミルトニアンを 、多体配座を と書くことにすると、エネルギー期待値は次のように書くことができる。 ここで、モンテカルロ法により積分を評価する際、 を確率分布関数として標本点を選びだせば、エネルギー期待値 をいわゆる局所エネルギー の平均値として評価することができる。 が所与の変分パラメータ について得られたならば、エネルギーを最小化するよう変分パラメータを最適化することにより、基底状態波動関数の可能な限り最適な表現を得ることができる。VMC は、多次元積分を数値積分により評価するという点以外は他の変分法と全く変りがない。この問題においては、ありうる全ての配座 から構成される多体ヒルベルト空間の次元が典型的には物理系のサイズに対し指数関数的に大きくなるため、モンテカルロ積分が特に重要となる。エネルギー期待値を数値的に評価するための他の手法は、モンテカルロ法をもちいるものよりもずっと小さい系にしか適用できないことが一般的である。この手法の精度は変分状態の選択に大きく依存する。 最も簡単な選択は典型的には平均場形式、すなわち をヒルベルト空間上で因数分解された形で書くことである。この特に単純な形式では、多体効果が無視されているため典型的にはあまり正確ではない。波動関数を分離可能な形で書いた場合に比べた際の精度向上に最も寄与するものの一つは、いわゆる Jastrow 因子の導入である。この場合、波動関数は のように書き下される。ここで、 は粒子対間の距離、 は変分法により決定される関数である。この因子により明示的に粒子・粒子間の相関を考慮することができるが、多体積分は分離不可能となるため、これを効率的に評価できる方法はモンテカルロ法のみとなる。 化学的系においては、30個未満のパラメータで電子相関エネルギーの80%から90%を得ることができる、わずかだけ洗練されたものが存在する。これに比べて、配置間相互作用法を用いて同等の精度を得るためには、考慮する系によるもののおよそ50,000個のパラメータが必要となる。さらに、VMCは通常粒子数の数乗のオーダーでスケールする。波動関数の関数形によるものの、エネルギー期待値の計算は N2–4 程度のオーダーでスケールする。
rdf:langString In computational physics, variational Monte Carlo (VMC) is a quantum Monte Carlo method that applies the variational method to approximate the ground state of a quantum system. The basic building block is a generic wave function depending on some parameters . The optimal values of the parameters is then found upon minimizing the total energy of the system. In particular, given the Hamiltonian , and denoting with a many-body configuration, the expectation value of the energy can be written as: Following the Monte Carlo method for evaluating integrals, we can interpret as a probability distribution function, sample it, and evaluate the energy expectation value as the average of the so-called local energy . Once is known for a given set of variational parameters , then optimization is performed in order to minimize the energy and obtain the best possible representation of the ground-state wave-function. VMC is no different from any other variational method, except that the many-dimensional integrals are evaluated numerically. Monte Carlo integration is particularly crucial in this problem since the dimension of the many-body Hilbert space, comprising all the possible values of the configurations , typically grows exponentially with the size of the physical system. Other approaches to the numerical evaluation of the energy expectation values would therefore, in general, limit applications to much smaller systems than those analyzable thanks to the Monte Carlo approach. The accuracy of the method then largely depends on the choice of the variational state. The simplest choice typically corresponds to a mean-field form, where the state is written as a factorization over the Hilbert space. This particularly simple form is typically not very accurate since it neglects many-body effects. One of the largest gains in accuracy over writing the wave function separably comes from the introduction of the so-called Jastrow factor. In this case the wave function is written as , where is the distance between a pair of quantum particles and is a variational function to be determined. With this factor, we can explicitly account for particle-particle correlation, but the many-body integral becomes unseparable, so Monte Carlo is the only way to evaluate it efficiently. In chemical systems, slightly more sophisticated versions of this factor can obtain 80–90% of the correlation energy (see electronic correlation) with less than 30 parameters. In comparison, a configuration interaction calculation may require around 50,000 parameters to reach that accuracy, although it depends greatly on the particular case being considered. In addition, VMC usually scales as a small power of the number of particles in the simulation, usually something like N2−4 for calculation of the energy expectation value, depending on the form of the wave function.
xsd:nonNegativeInteger 14327

data from the linked data cloud