Variable-order Markov model

http://dbpedia.org/resource/Variable-order_Markov_model an entity of type: WikicatMarkovModels

In the mathematical theory of stochastic processes, variable-order Markov (VOM) models are an important class of models that extend the well known Markov chain models. In contrast to the Markov chain models, where each random variable in a sequence with a Markov property depends on a fixed number of random variables, in VOM models this number of conditioning random variables may vary based on the specific observed realization. rdf:langString
rdf:langString Variable-order Markov model
xsd:integer 10770999
xsd:integer 1099869399
rdf:langString In the mathematical theory of stochastic processes, variable-order Markov (VOM) models are an important class of models that extend the well known Markov chain models. In contrast to the Markov chain models, where each random variable in a sequence with a Markov property depends on a fixed number of random variables, in VOM models this number of conditioning random variables may vary based on the specific observed realization. This realization sequence is often called the context; therefore the VOM models are also called context trees. VOM models are nicely rendered by colorized probabilistic suffix trees (PST). The flexibility in the number of conditioning random variables turns out to be of real advantage for many applications, such as statistical analysis, classification and prediction.
xsd:nonNegativeInteger 9028

data from the linked data cloud