Upward planar drawing

http://dbpedia.org/resource/Upward_planar_drawing an entity of type: Abstraction100002137

In graph drawing, an upward planar drawing of a directed acyclic graph is an embedding of the graph into the Euclidean plane, in which the edges are represented as non-crossing monotonic upwards curves. That is, the curve representing each edge should have the property that every horizontal line intersects it in at most one point, and no two edges may intersect except at a shared endpoint. In this sense, it is the ideal case for layered graph drawing, a style of graph drawing in which edges are monotonic curves that may cross, but in which crossings are to be minimized. rdf:langString
Восходящее планарное представление направленного ациклического графа — это вложение графа в евклидово пространство, в котором рёбра представлены как непересекающиеся монотонно возрастающие кривые. То есть, кривая, представляющая любое ребро, должна иметь свойство, что любая горизонтальная прямая пересекает его максимум в одной точке, и никакие два ребра не могут пересекаться, разве что на концах. В этом смысле это идеальный случай для послойного рисования графа, стиля представления графа, в котором монотонные кривые могут пересекаться, но в которых число пересечений минимально. rdf:langString
rdf:langString Восходящее планарное представление
rdf:langString Upward planar drawing
xsd:integer 40148474
xsd:integer 1093860796
rdf:langString In graph drawing, an upward planar drawing of a directed acyclic graph is an embedding of the graph into the Euclidean plane, in which the edges are represented as non-crossing monotonic upwards curves. That is, the curve representing each edge should have the property that every horizontal line intersects it in at most one point, and no two edges may intersect except at a shared endpoint. In this sense, it is the ideal case for layered graph drawing, a style of graph drawing in which edges are monotonic curves that may cross, but in which crossings are to be minimized.
rdf:langString Восходящее планарное представление направленного ациклического графа — это вложение графа в евклидово пространство, в котором рёбра представлены как непересекающиеся монотонно возрастающие кривые. То есть, кривая, представляющая любое ребро, должна иметь свойство, что любая горизонтальная прямая пересекает его максимум в одной точке, и никакие два ребра не могут пересекаться, разве что на концах. В этом смысле это идеальный случай для послойного рисования графа, стиля представления графа, в котором монотонные кривые могут пересекаться, но в которых число пересечений минимально.
xsd:nonNegativeInteger 19487

data from the linked data cloud