Uniform polytope

http://dbpedia.org/resource/Uniform_polytope

En geometrio, unuforma hiperpluredro estas vertico-transitiva hiperpluredro farita el unuformaj hiperpluredraj facetoj. Unuforma hiperpluredro devas ankaŭ havi nur regulajn plurlaterajn edrojn. Samformeco estas ĝeneraligo de la pli malnova kategorio duonregula, sed ankaŭ inkluzivas la regulajn hiperpluredrojn. Plu, nekonveksaj regulaj edroj kaj verticaj figuroj (stelaj plurlateroj) estas permesitaj, kio grande elvolvi la aron de konsiderataj formoj. Severa difino postulas ke unuformaj hiperpluredroj estu finiaj. Pli ĝeneraliga difino permesas al unuformaj kahelaroj de eŭklida spaco kaj hiperbola spaco al esti konsiderataj kiel hiperpluredroj. rdf:langString
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vertex-transitive even-sided polygons that alternate two different lengths of edges). rdf:langString
rdf:langString Unuforma hiperpluredro
rdf:langString Uniform polytope
rdf:langString Однорідний многогранник
xsd:integer 6842392
xsd:integer 1115807893
rdf:langString October 2022
rdf:langString similar to truncation
rdf:langString En geometrio, unuforma hiperpluredro estas vertico-transitiva hiperpluredro farita el unuformaj hiperpluredraj facetoj. Unuforma hiperpluredro devas ankaŭ havi nur regulajn plurlaterajn edrojn. Samformeco estas ĝeneraligo de la pli malnova kategorio duonregula, sed ankaŭ inkluzivas la regulajn hiperpluredrojn. Plu, nekonveksaj regulaj edroj kaj verticaj figuroj (stelaj plurlateroj) estas permesitaj, kio grande elvolvi la aron de konsiderataj formoj. Severa difino postulas ke unuformaj hiperpluredroj estu finiaj. Pli ĝeneraliga difino permesas al unuformaj kahelaroj de eŭklida spaco kaj hiperbola spaco al esti konsiderataj kiel hiperpluredroj. Proksime ĉiuj unuformaj hiperpluredroj povas esti generitaj per konstruo de Wythoff kaj prezentitaj per figuro de Coxeter-Dynkin.
rdf:langString In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vertex-transitive even-sided polygons that alternate two different lengths of edges). This is a generalization of the older category of semiregular polytopes, but also includes the regular polytopes. Further, star regular faces and vertex figures (star polygons) are allowed, which greatly expand the possible solutions. A strict definition requires uniform polytopes to be finite, while a more expansive definition allows uniform honeycombs (2-dimensional tilings and higher dimensional honeycombs) of Euclidean and hyperbolic space to be considered polytopes as well.
xsd:nonNegativeInteger 54632

data from the linked data cloud