Uncertainty principle
http://dbpedia.org/resource/Uncertainty_principle an entity of type: Thing
Necerteca principo de Heisenberg asertas ke ne eblas samtempe scii kaj la precizan pozicion kaj la movokvanton de partiklo. La principon unue eksciis Wolfgang Pauli per letero de Werner Heisenberg en februaro 1927. En la sekvanta jaro, la artikolo eldoniĝis.
rdf:langString
Zasada nieoznaczoności (zasada nieoznaczoności Heisenberga lub zasada nieokreśloności) – reguła, która mówi, że istnieją takie pary wielkości, których nie da się jednocześnie zmierzyć z dowolną dokładnością. O wielkościach takich mówi się, że nie komutują. Akt pomiaru jednej wielkości wpływa na układ tak, że część informacji o drugiej wielkości jest tracona. Zasada nieoznaczoności nie wynika z niedoskonałości metod ani instrumentów pomiaru, lecz z samej natury rzeczywistości.
rdf:langString
在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。
rdf:langString
يعتبر مبدأ عدم التحديد أو مبدأ عدم التأكد أو مبدأ الريبة أو مبدأ اللايقين أو مبدأ الشك (بالإنجليزية: Heisenberg Uncertainty Principle) من أهم المبادئ في نظرية الكم بعد أن صاغه العالم الألماني هايزنبرج عام 1927 وينص هذا المبدأ على أنه لا يمكن تحديد خاصيتين مقاستين من خواص جملة كمومية إلا ضمن حدود معينة من الدقة، أي أن تحديد أحد الخاصيتين بدقة متناهية (ذات عدم تأكد ضئيل) يستتبع عدم تأكد كبير في قياس الخاصية الأخرى، ويشيع تطبيق هذا المبدأ بكثرة على خاصيتي تحديد الموضع والسرعة لجسيم أولي. فهذا المبدأ معناه أن الإنسان ليس قادرا على معرفة كل شيء بدقة 100%. ولا يمكنه قياس كل شيء بدقة 100%، إنما هناك قدر لا يعرفه ولا يستطيع قياسه. وهذه الحقيقة الطبيعية تخضع للمعادلة المكتوبة أدناه والتي يتحكم فيها h ثابت بلانك.
rdf:langString
El principi d'incertesa de Heisenberg o, més correctament, principi d'indeterminació de Heisenberg postula que no es pot saber, alhora i amb total precisió, el valor de certs objectes observables, com per exemple la posició i el moment d'una partícula. El principi d'incertesa és un dels principis més importants de la mecànica quàntica i va ser formulat per Werner Heisenberg el 1927. Segons Heisenberg, no és possible precisar la posició d'una partícula quàntica, ja que aquestes "no tenen una extensió fixa" i, per tant, "no són pas corpuscles localitzats" i no té sentit parlar de quina és la seva posició.
rdf:langString
Heisenbergův princip neurčitosti (též relace neurčitosti) je matematická vlastnost dvou veličin. Nejznámějšími veličinami tohoto typu jsou poloha a hybnost elementární částice v kvantové fyzice. Heisenbergův princip říká, že čím přesněji určíme jednu z konjugovaných vlastností, tím méně přesně můžeme určit tu druhou – bez ohledu na to, jak dobré přístroje máme. To také znamená, že představa z klasické fyziky, že můžeme předpovědět chování systému, pokud známe jeho , je v praxi nepoužitelná: počáteční stav systému nikdy nemůžeme zjistit dostatečně přesně (protože nelze dostatečně přesně zjistit oba tyto konjugované parametry).
rdf:langString
Η αρχή της απροσδιοριστίας ή διαφορετικά αρχή της αβεβαιότητας είναι βασικό αξίωμα της κβαντικής μηχανικής που διατυπώθηκε για πρώτη φορά το 1927 από τον Βέρνερ Χάιζενμπεργκ (Werner Heisenberg, 1901 - 1976). Σύμφωνα με την αρχή της απροσδιοριστίας είναι αδύνατο να μετρηθεί ταυτόχρονα και με ακρίβεια, ούτε πρακτικά, ούτε και θεωρητικά η θέση και η ταχύτητα, ή ορμή, ενός σωματίου.Εν αντιθέσει με την , σύμφωνα με την αρχή της απροσδιοριστίας υπάρχουν γεγονότα των οποίων η εκδήλωση δεν υπαγορεύεται από κάποια αιτία.
rdf:langString
Die Heisenbergsche Unschärferelation oder Unbestimmtheitsrelation (seltener auch Unschärfeprinzip) ist die Aussage der Quantenphysik, dass zwei komplementäre Eigenschaften eines Teilchens nicht gleichzeitig beliebig genau bestimmbar sind. Das bekannteste Beispiel für ein Paar solcher Eigenschaften sind Ort und Impuls.
rdf:langString
En mecánica cuántica, la relación de indeterminación de Heisenberg o principio de incertidumbre establece la imposibilidad de que determinados pares de magnitudes físicas observables y complementarias sean conocidas con precisión arbitraria. Sucintamente, afirma que no se puede determinar, en términos de la física cuántica, simultáneamente y con precisión arbitraria, ciertos pares de variables físicas, como son, la posición y el momento lineal (cantidad de movimiento) de un objeto dado. En otras palabras, cuanta mayor certeza se busca en determinar la posición de una partícula, menos se conoce su momento lineal y, por tanto, su masa y velocidad. Este principio fue enunciado por el físico teórico alemán Werner Heisenberg en 1927.
rdf:langString
Mekanika kuantikoan Heisenberg-en ziurgabetasun printzipioak dio behatu daitezkeen magnitude fisiko eta osagarriak zehaztasun osoz ezin ditzakegula ezagutu. Hau da, fisika kuantikoan ezin ditugula jakin aldi berean eta zehaztasun osoz elkarren artean konmutatzen ez duten osagaien balioa. Horren adibide dira, partikula baten posizioa eta momentu lineala. Honen ondorioz, partikularen posizioa zehaztasun osoz ezagutuz gero, honen momentu linealaren ziurgabetasuna absolutua izango da. Printzipio hau Werner Heisenbergek enuntziatu zuen 1927an.
rdf:langString
Thaispeáin Werner Heisenberg éiginnteacht bhunúsach sa bhfisic chandamach, go laghdaíonn cruinneas tomhas ionad cáithnín de réir mar a mhéadaítear cruinneas thomhas a luais, agus a mhalairt go cruinn. Ar leibhéal na gcáithníní bunúsacha, cuireann próiseas an tomhais isteach ar an gcóras. Mar shampla, dá mb'fhéidir le micreascóp cumasach leictreon a bhrath, bheadh gá le solas chuige seo. Ach tá leictreon chomh beag éadrom sin, dá dtitfeadh fótón amháin air, go n-athródh sé sin ionad an leictreoin. Mar an gcéanna más mian teocht nó brú nó sruth leictreach a thomhas, ach de ghnáth is beag is fiú an oiread a chuireann an modh tomhais isteach ar an gcóras. Ach ar an leibhéal fo-adamhach, is amhlaidh nach féidir eolas ar leith a thomhas go cruinn. Ní hé ciall an phrionsabail nach bhfuil aon chin
rdf:langString
En mécanique quantique, le principe d'incertitude ou, plus correctement, principe d'indétermination, aussi connu sous le nom de principe d'incertitude de Heisenberg, désigne toute inégalité mathématique affirmant qu'il existe une limite fondamentale à la précision avec laquelle il est possible de connaître simultanément deux propriétés physiques d'une même particule ; ces deux variables dites complémentaires peuvent être sa position et sa quantité de mouvement. Cette limite s'applique principalement aux objets microscopiques et devient négligeable pour les objets macroscopiques.
rdf:langString
Prinsip ketidakpastian (juga dikenal sebagai prinsip ketidakpastian Heisenberg) dalam mekanika kuantum adalah salah satu dari berbagai pertidaksamaan matematis yang menyatakan bahwa adalah (hampir) tidak mungkin untuk mengukur dua besaran secara bersamaan, misalnya posisi dan momentum suatu partikel. Prinsip ini pertama kali dicetuskan oleh fisikawan Jerman bernama Werner Heisenberg pada tahun 1927. di mana ħ adalah konstanta Planck tereduksi, h/(2π).
rdf:langString
In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as position, x, and momentum, p, can be predicted from initial conditions. where ħ is the reduced Planck constant, h/(2π).
rdf:langString
하이젠베르크 불확정성 원리(Heigenberg 不確定性原理, Heigenberg uncertainty principle)는 양자 역학에서 맞바꿈 관측가능량(commuting observables)이 아닌 두 개의 관측가능량(observable)을 동시에 측정할 때, 둘 사이의 정확도에는 물리적 한계가 있다는 원리다. 불확정성 원리는 양자역학에 대한 추가적인 가정이 아니고 양자역학의 으로부터 얻어진 근본적인 결과이다. 하이젠베르크의 불확정성 원리는 위치-운동량에 대한 불확정성 원리이며, 입자의 위치와 운동량을 동시에 정확히 측정할 수 없다는 것을 뜻한다. 위치가 정확하게 측정될수록 운동량의 퍼짐(또는 불확정도)은 커지게 되고 반대로 운동량이 정확하게 측정될수록 위치의 불확정도는 커지게 된다. 하이젠베르크의 불확정성 원리를 수학적으로 표현하면 다음과 같다. 임의의 양자상태에서 위치의 평균에 대한 제곱평균제곱근(RMS)편차 (X의 표준편차)는 운동량의 평균에 대한 제곱평균제곱근 편차 (P의 표준편차)는 두 표준편차의 곱은 다음과 같다. 즉, 위치와 운동량의 표준편차의 곱은 디랙 상수의 절반보다 같거나 크다.
rdf:langString
In meccanica quantistica, il principio d'indeterminazione di Heisenberg stabilisce i limiti nella misurazione dei valori di grandezze fisiche coniugate o, nelle formulazioni più recenti e generali, incompatibili in un sistema fisico. Nella forma più nota, viene espresso dalla relazione: fra l'incertezza sulla posizione e quella sulla quantità di moto di una particella, dove è la costante di Planck ridotta.
rdf:langString
不確定性原理(ふかくていせいげんり、(独: Unschärferelation、英: Uncertainty principle)は、量子力学に従う系の物理量を観測したときの不確定性と、同じ系で別の物理量を観測したときの不確定性が適切な条件下では同時に0になる事はないとする一連の定理の総称である。特に重要なのは、がそれぞれ位置と運動量のときであり、狭義にはこの場合のものを不確定性原理という。 このような限界が存在するはずだという元々の発見的議論がハイゼンベルクによって与えられたため、これはハイゼンベルクの原理という名前が付けられることもある。しかし後述するようにハイゼンベルク自身による不確定性原理の物理的説明は、今日の量子力学の知識からは正しいものではない。 今日の量子力学において、不確定性原理でいう観測は日常語のそれとは意味が異なる用語であり、測定装置のような古典的物体と量子系との間の任意の相互作用を意味する。したがって例えば、実験者が測定装置に表示された値を実際に見たかどうかといった事とは無関係に定義される。また不確定性とは、物理量を観測した時に得られる測定値の標準偏差を表す。
rdf:langString
De onzekerheidsrelatie van Heisenberg, ook het onzekerheidsprincipe van Heisenberg, door Werner Heisenberg in 1927 gepubliceerd, is een van de belangrijkste resultaten van de kwantummechanica. De relatie drukt uit dat er zogenaamde incommensurabele paren van grootheden bestaan, waarvoor geldt dat niet van beide grootheden de waarden tegelijkertijd exact vastgelegd kunnen worden of met een willekeurige mate van nauwkeurigheid bepaald kunnen worden. Een voorbeeld van een dergelijk paar is plaats en impuls, een ander voorbeeld is energie en tijd. .
rdf:langString
Em mecânica quântica, o princípio da incerteza (também chamado princípio da incerteza da Heisenberg), formulado em 1927 por Werner Heisenberg, é um enunciado que estabelece um limite fundamental para a precisão com que certos pares de propriedades de determinada partícula física, conhecidas como variáveis complementares (tais como posição e momento linear), podem ser conhecidos. No seu artigo de 1927, Heisenberg propõe que, em nível quântico, simultaneamente, quanto menor for a incerteza na medida da posição de uma partícula, maior será a incerteza do seu momento linear e vice-versa.
rdf:langString
Inom kvantfysiken anger Heisenbergs osäkerhetsprincip att det för ett objekt inte går att samtidigt känna till både position och rörelsemängd med en godtyckligt hög grad av noggrannhet utan att det finns en bestämbar undre gräns för osäkerheten; detta till skillnad från klassisk mekanik där varje partikel har ett bestämt läge och en bestämd rörelsemängd vid varje given tidpunkt. Principen är en av hörnstenarna inom kvantmekaniken, och namngavs av Werner Heisenberg 1927.
rdf:langString
Принцип неопределённости Гейзенбе́рга в квантовой механике — фундаментальное соображение (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного полей). Более доступно он звучит так: чем точнее измеряется одна характеристика частицы, тем менее точно можно измерить вторую. Соотношение неопределённостей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней физической квантовой механики. Является следствием принципа корпускулярно-волнового д
rdf:langString
Принцип невизначеності є фундаментальною засадою квантової механіки, яка стверджує, що принципово неможливо одночасно виміряти з довільною точністю координати й імпульси квантового об'єкта. Це твердження справедливе не лише щодо вимірювання, а й щодо теоретичної побудови квантового стану системи. Тобто, неможливо побудувати такий квантовий стан, в якому система одночасно характеризувалася б точними значеннями координати та імпульсу.
rdf:langString
rdf:langString
مبدأ الريبة
rdf:langString
Principi d'incertesa de Heisenberg
rdf:langString
Princip neurčitosti
rdf:langString
Heisenbergsche Unschärferelation
rdf:langString
Αρχή της απροσδιοριστίας
rdf:langString
Necerteca principo de Heisenberg
rdf:langString
Relación de indeterminación de Heisenberg
rdf:langString
Heisenbergen ziurgabetasunaren printzipioa
rdf:langString
Prionsabal éiginnteachta Heisenberg
rdf:langString
Prinsip ketidakpastian Heisenberg
rdf:langString
Principe d'incertitude
rdf:langString
Principio di indeterminazione di Heisenberg
rdf:langString
불확정성 원리
rdf:langString
不確定性原理
rdf:langString
Onzekerheidsrelatie van Heisenberg
rdf:langString
Zasada nieoznaczoności
rdf:langString
Princípio da incerteza de Heisenberg
rdf:langString
Принцип неопределённости
rdf:langString
Uncertainty principle
rdf:langString
Osäkerhetsprincipen
rdf:langString
不确定性原理
rdf:langString
Принцип невизначеності
xsd:integer
31883
xsd:integer
1124432114
rdf:langString
right
xsd:date
2010-02-16
rdf:langString
vertical
rdf:langString
Position and momentum probability densities for an initial Gaussian distribution. From top to bottom, the animations show the cases Ω=ω, Ω=2ω, and Ω=ω/2. Note the tradeoff between the widths of the distributions.
rdf:langString
Propagation of de Broglie waves in 1d—real part of the complex amplitude is blue, imaginary part is green. The probability of finding the particle at a given point x is spread out like a waveform, there is no definite position of the particle. As the amplitude increases above zero the curvature reverses sign, so the amplitude begins to decrease again, and vice versa—the result is an alternating amplitude: a wave.
rdf:langString
p/u095100
rdf:langString
Propagation of a de broglie plane wave.svg
rdf:langString
Propagation of a de broglie wavepacket.svg
rdf:langString
Position_and_momentum_of_a_Gaussian_initial_state_for_a_QHO,_narrow.gif
rdf:langString
Position_and_momentum_of_a_Gaussian_initial_state_for_a_QHO,_wide.gif
rdf:langString
Position_and_momentum_of_a_Gaussian_initial_state_for_a_QHO,_balanced.gif
rdf:langString
The derivation shown here incorporates and builds off of those shown in Robertson, Schrödinger and standard textbooks such as Griffiths. For any Hermitian operator , based upon the definition of variance, we have
we let and thus
Similarly, for any other Hermitian operator in the same state
for
The product of the two deviations can thus be expressed as
In order to relate the two vectors and , we use the Cauchy–Schwarz inequality which is defined as
and thus Equation can be written as
Since is in general a complex number, we use the fact that the modulus squared of any complex number is defined as , where is the complex conjugate of . The modulus squared can also be expressed as
we let and and substitute these into the equation above to get
The inner product is written out explicitly as
and using the fact that and are Hermitian operators, we find
Similarly it can be shown that
Thus, we have
and
We now substitute the above two equations above back into Eq. and get
Substituting the above into Equation we get the Schrödinger uncertainty relation
This proof has an issue related to the domains of the operators involved. For the proof to make sense, the vector has to be in the domain of the unbounded operator , which is not always the case. In fact, the Robertson uncertainty relation is false if is an angle variable and is the derivative with respect to this variable. In this example, the commutator is a nonzero constant—just as in the Heisenberg uncertainty relation—and yet there are states where the product of the uncertainties is zero. This issue can be overcome by using a variational method for the proof, or by working with an exponentiated version of the canonical commutation relations.
Note that in the general form of the Robertson–Schrödinger uncertainty relation, there is no need to assume that the operators and are self-adjoint operators. It suffices to assume that they are merely symmetric operators.
rdf:langString
Uncertainty principle
rdf:langString
Proof of the Schrödinger uncertainty relation
xsd:integer
250
360
rdf:langString
يعتبر مبدأ عدم التحديد أو مبدأ عدم التأكد أو مبدأ الريبة أو مبدأ اللايقين أو مبدأ الشك (بالإنجليزية: Heisenberg Uncertainty Principle) من أهم المبادئ في نظرية الكم بعد أن صاغه العالم الألماني هايزنبرج عام 1927 وينص هذا المبدأ على أنه لا يمكن تحديد خاصيتين مقاستين من خواص جملة كمومية إلا ضمن حدود معينة من الدقة، أي أن تحديد أحد الخاصيتين بدقة متناهية (ذات عدم تأكد ضئيل) يستتبع عدم تأكد كبير في قياس الخاصية الأخرى، ويشيع تطبيق هذا المبدأ بكثرة على خاصيتي تحديد الموضع والسرعة لجسيم أولي. فهذا المبدأ معناه أن الإنسان ليس قادرا على معرفة كل شيء بدقة 100%. ولا يمكنه قياس كل شيء بدقة 100%، إنما هناك قدر لا يعرفه ولا يستطيع قياسه. وهذه الحقيقة الطبيعية تخضع للمعادلة المكتوبة أدناه والتي يتحكم فيها h ثابت بلانك. ونتائج هذا المبدأ شيء هائل حقاً، فإذا كانت القوانين الأساسية للفيزياء تمنع أي عالماً مهما كانت له ظروفا مثالية للحصول على معلومات مؤكدة تماما. فما يقوم بقياسه يحتوي طبيعيا على قدر من عدم الدقة لا يستطيع تخطيه، لأنه قانون طبيعي. فهذا هو منطق مبدأ عدم التأكد. ومعنى ذلك أنه لا يستطيع أن يتنبأ بحركة الأشياء مستقبلاً بدقة متناهية، بل تظل هناك نسبة ولو صغيرة من عدم التأكد. ومعنى هذا المبدأ أنه مهما كان الإحكام وتطوير وسائلنا في القياس فلن يمكننا ذلك من التوصل إلى معرفة كاملة للطبيعة من حولنا. وقد وصف هايزنبرج تلك النتيجة الباهرة لمبدأ عدم التأكد عندما نفي سريان المقولة: «أنه يمكننا معرفة المستقبل إذا عرفنا الحاضر بدقة» وقال: «إن عدم استطاعتنا معرفة المستقبل لا تنبع من عدم معرفتنا بالحاضر، وإنما بسبب عدم استطاعتنا معرفة الحاضر». ومبدأ عدم التأكد، أو عدم اليقين معناه أن علم الفيزياء لا يستطيع أن يفعل أكثر من أن تكون لديه تنبؤات إحصائية فقط. فالعالم الذي يدرس النشاط الإشعاعي للذرات مثلا، يمكنه أن يتنبأ فقط بأن من كل ألف مليون ذرة راديوم مليونان فقط سوف يصدران أشعة غاما في اليوم التالي، لكنه لا يستطيع معرفة أي ذرة من مجموع ذرات الراديوم سوف تفعل ذلك. ويمكننا القول أنه كلما زادت عدد الذرات قل عدم التأكد وكلما نقص عدد الذرات زاد عدم التأكد. وكانت هذه النظرية مُقلقة للعلماء في وقتها لدرجة أن عالماً كبيراً مثل أينشتاين قد رفضها أول الأمر. وهو الذي قال «إن عقلي لا يستطيع أن يتصور أن الله يلعب النرد بهذا الكون» متناسياً إدراكه الشخصي. ومع ذلك لم يجد العلماء أمامهم إلا قبول هذه النظرية التي اهتدى إليها هايزنبرج والتي وضحت للإنسان خاصية هامة من خواص هذا الكون.
rdf:langString
Heisenbergův princip neurčitosti (též relace neurčitosti) je matematická vlastnost dvou veličin. Nejznámějšími veličinami tohoto typu jsou poloha a hybnost elementární částice v kvantové fyzice. Heisenbergův princip říká, že čím přesněji určíme jednu z konjugovaných vlastností, tím méně přesně můžeme určit tu druhou – bez ohledu na to, jak dobré přístroje máme. To také znamená, že představa z klasické fyziky, že můžeme předpovědět chování systému, pokud známe jeho , je v praxi nepoužitelná: počáteční stav systému nikdy nemůžeme zjistit dostatečně přesně (protože nelze dostatečně přesně zjistit oba tyto konjugované parametry). V poslední době se však ukazuje, že neplatí tak, jak se předpokládalo. I faktor π-násobku je nejasný.
rdf:langString
El principi d'incertesa de Heisenberg o, més correctament, principi d'indeterminació de Heisenberg postula que no es pot saber, alhora i amb total precisió, el valor de certs objectes observables, com per exemple la posició i el moment d'una partícula. El principi d'incertesa és un dels principis més importants de la mecànica quàntica i va ser formulat per Werner Heisenberg el 1927. Segons Heisenberg, no és possible precisar la posició d'una partícula quàntica, ja que aquestes "no tenen una extensió fixa" i, per tant, "no són pas corpuscles localitzats" i no té sentit parlar de quina és la seva posició. En qualsevol mesura que fem, sempre s'associa un error experimental. Aquest error és degut al fet que s'empra un aparell de mesura i que, per tant, aquest no és "perfecte". Per exemple, si es vol mesurar la llargada d'una taula es pot fer fer servir un regle. A aquesta mesura, se li assigna un error d'un mil·límetre (si aquest està graduat en mil·límetres), ja que és l'error mínim que es pot fer en mesurar la llargada de la taula amb aquest aparell. Si es vol incrementar la precisió en la mesura, es pot fer servir un regle més precís. No obstant això, continuarà encara associada a la mesura un cert error. Suposem ara que es disposa d'un conjunt de taules idèntiques entre si i que se'n mesura la llargada. Si es dibuixa la freqüència de les mesures fetes, seguiran una certa distribució. Aquesta distribució segueix una distribució gaussiana caracteritzada per un valor mitjà, que correspon a la llargada de la taula, i una desviació estàndard, que mesura la dispersió de les diverses mesures respecte del valor mitjà (és una manera d'avaluar l'error fet en les mesures).
rdf:langString
Die Heisenbergsche Unschärferelation oder Unbestimmtheitsrelation (seltener auch Unschärfeprinzip) ist die Aussage der Quantenphysik, dass zwei komplementäre Eigenschaften eines Teilchens nicht gleichzeitig beliebig genau bestimmbar sind. Das bekannteste Beispiel für ein Paar solcher Eigenschaften sind Ort und Impuls. Die Unschärferelation ist nicht die Folge technisch behebbarer Unzulänglichkeiten eines entsprechenden Messinstrumentes, sondern prinzipieller Natur. Sie wurde 1927 von Werner Heisenberg im Rahmen der Quantenmechanik formuliert. Die heisenbergsche Unschärferelation kann als Ausdruck des Wellencharakters der Materie betrachtet werden. Sie gilt als Grundlage der Kopenhagener Deutung der Quantenmechanik.
rdf:langString
Η αρχή της απροσδιοριστίας ή διαφορετικά αρχή της αβεβαιότητας είναι βασικό αξίωμα της κβαντικής μηχανικής που διατυπώθηκε για πρώτη φορά το 1927 από τον Βέρνερ Χάιζενμπεργκ (Werner Heisenberg, 1901 - 1976). Σύμφωνα με την αρχή της απροσδιοριστίας είναι αδύνατο να μετρηθεί ταυτόχρονα και με ακρίβεια, ούτε πρακτικά, ούτε και θεωρητικά η θέση και η ταχύτητα, ή ορμή, ενός σωματίου.Εν αντιθέσει με την , σύμφωνα με την αρχή της απροσδιοριστίας υπάρχουν γεγονότα των οποίων η εκδήλωση δεν υπαγορεύεται από κάποια αιτία. Η απροσδιοριστία αυτή δεν αναφέρεται στην ανικανότητα του ανθρώπου να παρατηρήσει ορισμένα φαινόμενα στον μικρόκοσμο (ούτε αποτελεί φιλοσοφική αγνωσία) αλλά σε μία πραγματική ιδιότητα του Φυσικού Κόσμου, η οποία εμφανίζεται και πειραματικά. Ο λόγος που δεν βλέπουμε αυτή την αβεβαιότητα στην καθημερινότητα είναι ότι εμφανίζεται σε πολύ μικρή κλίμακα και γίνεται κυρίως εμφανής στον μικρόκοσμο.
rdf:langString
Necerteca principo de Heisenberg asertas ke ne eblas samtempe scii kaj la precizan pozicion kaj la movokvanton de partiklo. La principon unue eksciis Wolfgang Pauli per letero de Werner Heisenberg en februaro 1927. En la sekvanta jaro, la artikolo eldoniĝis.
rdf:langString
En mecánica cuántica, la relación de indeterminación de Heisenberg o principio de incertidumbre establece la imposibilidad de que determinados pares de magnitudes físicas observables y complementarias sean conocidas con precisión arbitraria. Sucintamente, afirma que no se puede determinar, en términos de la física cuántica, simultáneamente y con precisión arbitraria, ciertos pares de variables físicas, como son, la posición y el momento lineal (cantidad de movimiento) de un objeto dado. En otras palabras, cuanta mayor certeza se busca en determinar la posición de una partícula, menos se conoce su momento lineal y, por tanto, su masa y velocidad. Este principio fue enunciado por el físico teórico alemán Werner Heisenberg en 1927. Existe en la actualidad un leve error provocado por el pensamiento clásico tan arraigado en el razonamiento humano, se tiende a creer que la indeterminación se debe a la intervención experimental a la hora de medir una propiedad. Sin embargo, lo que el principio de indeterminación sugiere es que las propiedades de la partícula se encuentran en estado de superposición y por tanto tienen atribuidos a la vez diferentes valores de posición y de momento lineal. En la intervención, a la hora de medir, obligamos a una de las magnitudes a tomar un valor, colapsando su función de onda, y dándonos así un resultado preciso para esta, por lo que aumenta irremediablemente la indeterminación en la otra medida. El principio de indeterminación no tiene un análogo clásico y define una de las diferencias fundamentales entre física clásica y física cuántica. Desde un punto de vista lógico es una consecuencia de axiomas corrientes de la mecánica cuántica y por tanto estrictamente se deduce de los mismos.
rdf:langString
Mekanika kuantikoan Heisenberg-en ziurgabetasun printzipioak dio behatu daitezkeen magnitude fisiko eta osagarriak zehaztasun osoz ezin ditzakegula ezagutu. Hau da, fisika kuantikoan ezin ditugula jakin aldi berean eta zehaztasun osoz elkarren artean konmutatzen ez duten osagaien balioa. Horren adibide dira, partikula baten posizioa eta momentu lineala. Honen ondorioz, partikularen posizioa zehaztasun osoz ezagutuz gero, honen momentu linealaren ziurgabetasuna absolutua izango da. Printzipio hau Werner Heisenbergek enuntziatu zuen 1927an. Jatorrian Heisenbergek neurketaren prozesuaren konsekuentzia moduan azaldu zuen: posizioa era zehatzean neurtzeak momentu linealari eragiten zion eta alderantziz, adibide bat (gamma-izpien mikroskopioa) aurkeztuz, zeina de Broglie hipotesiaren menpekoa zen. Haatik, gaur egun beste era osatuago batean ulertua da: ziurgabetasuna partikulan bertan ere existitzen da, baita neurketa egin baino lehen ere. Ziurgabetasunaren printzipioaren azalpen modernoa, izatez, Kopenhage interpretaziotik (Bohr eta Heisenbergek abiaturikoa) haratago joanda, partikularen uhin-izaeraren oraindik menpekoagoa da: soka batean uhin baten posizioaz hitz egitea zentzu gabekoa den moduan, partikulek ez dute posizio guztiz zehatzik; antzera, pultsu baten uhin-luzeraz hitz egitea zentzu gabekoa den moduan, partikulek ez dute momentu lineal guztiz zehatzik (zeina uhin-luzeraren alderantzizkoaren proportzionala den). Gainera, posizioa erlatiboki ondo definitua dagoenean, uhina pultsu erakoa da eta nahiko txarto definituriko uhin-luzera (eta beraz momentu lineala) du. Eta era osagarrian, momentu lineala (eta beraz uhin luzera) erlatiboki ondo definitua dagoenean, uhinak itxura luze eta sinusoidala du, eta beraz nahiko txarto dago definitua bere posizioa. De Brogliek berak proposatu zuen pilotu-uhin bat uhin-partikula dualtasuna azaltzeko. Bere ikuspuntutik, partikula bakoitzak posizio eta momentu lineal ondo definituak zituen, baina Schrödingerren ekuaziotik ondorioztaturiko uhin funtzio baten bidez gidatua egongo zen. Pilotu-uhinaren teoria hasieran baztertua izan zen, efektu ez-lokalak sorrarazten baitzituen partikula bat baino gehiagoz osaturiko sistemetan. Lokaltasun eza dena dela, laster bihurtu zen teoria kuantikoaren ezaugarri osagarria eta de Broglieren eredua hedatu zuen, esplizituki teorian sartu arte zuen. Bohm-en mekanikan, uhin-partikularen dualtasuna ez da materia beraren propietatea, baizik eta gida-ekuazio edota potentzial kuantiko baten menpean higitzen ari den partikularen itxura.
rdf:langString
En mécanique quantique, le principe d'incertitude ou, plus correctement, principe d'indétermination, aussi connu sous le nom de principe d'incertitude de Heisenberg, désigne toute inégalité mathématique affirmant qu'il existe une limite fondamentale à la précision avec laquelle il est possible de connaître simultanément deux propriétés physiques d'une même particule ; ces deux variables dites complémentaires peuvent être sa position et sa quantité de mouvement. Cette limite s'applique principalement aux objets microscopiques et devient négligeable pour les objets macroscopiques. Présenté pour la première fois en 1927, par le physicien allemand Werner Heisenberg, il énonce que toute amélioration de la précision de mesure de la position d’une particule se traduit par une moindre précision de mesure de sa vitesse et vice-versa. Mais cette formulation laisse entendre que la particule possède réellement une position et une vitesse précise, que la mécanique quantique empêche de mesurer, ce qui n'est en fait pas le cas. Pour limiter ces incompréhensions liées à la terminologie, le nom de principe d'indétermination est parfois préféré car le principe ne porte pas sur l'ignorance « subjective » ou technique de grandeurs par l'expérimentateur, mais bien sur une impossibilité fondamentale de les déterminer, et même sur le fait que le concept de grandeur précise n'a pas de sens physique. De plus, ce « principe » étant démontrable, il s'agit en fait d'un théorème.
rdf:langString
Thaispeáin Werner Heisenberg éiginnteacht bhunúsach sa bhfisic chandamach, go laghdaíonn cruinneas tomhas ionad cáithnín de réir mar a mhéadaítear cruinneas thomhas a luais, agus a mhalairt go cruinn. Ar leibhéal na gcáithníní bunúsacha, cuireann próiseas an tomhais isteach ar an gcóras. Mar shampla, dá mb'fhéidir le micreascóp cumasach leictreon a bhrath, bheadh gá le solas chuige seo. Ach tá leictreon chomh beag éadrom sin, dá dtitfeadh fótón amháin air, go n-athródh sé sin ionad an leictreoin. Mar an gcéanna más mian teocht nó brú nó sruth leictreach a thomhas, ach de ghnáth is beag is fiú an oiread a chuireann an modh tomhais isteach ar an gcóras. Ach ar an leibhéal fo-adamhach, is amhlaidh nach féidir eolas ar leith a thomhas go cruinn. Ní hé ciall an phrionsabail nach bhfuil aon chinnteacht sa bhfisic chandamach, ach nach féidir dhá airí d'aon réad candamach, mar fhuinneamh nó móiminteam nó am nó ionad nó gluaisne, a thomhas go cruinn ag an am céanna.
rdf:langString
Prinsip ketidakpastian (juga dikenal sebagai prinsip ketidakpastian Heisenberg) dalam mekanika kuantum adalah salah satu dari berbagai pertidaksamaan matematis yang menyatakan bahwa adalah (hampir) tidak mungkin untuk mengukur dua besaran secara bersamaan, misalnya posisi dan momentum suatu partikel. Prinsip ini pertama kali dicetuskan oleh fisikawan Jerman bernama Werner Heisenberg pada tahun 1927. Prinsip ketidakpastian menyatakan bahwa semakin tepat posisi suatu partikel ditentukan, semakin tidak tepat momentumnya yang dapat diprediksi dari kondisi awal, begitu pula sebaliknya. Dalam jurnal yang diterbitkan tahun 1927, Heisenberg awalnya menyimpulkan prinsip ketidakpastiannya dengan rumus pq ~ h menggunakan konstanta Planck. Ketidaksetaraan formal yang menghubungkan simpangan baku posisi σx dan simpangan baku momentum σp diturunkan oleh Earle Hesse Kennard pada akhir tahun 1927 dan oleh Hermann Weyl pada tahun 1928 menjadi: di mana ħ adalah konstanta Planck tereduksi, h/(2π).
rdf:langString
不確定性原理(ふかくていせいげんり、(独: Unschärferelation、英: Uncertainty principle)は、量子力学に従う系の物理量を観測したときの不確定性と、同じ系で別の物理量を観測したときの不確定性が適切な条件下では同時に0になる事はないとする一連の定理の総称である。特に重要なのは、がそれぞれ位置と運動量のときであり、狭義にはこの場合のものを不確定性原理という。 このような限界が存在するはずだという元々の発見的議論がハイゼンベルクによって与えられたため、これはハイゼンベルクの原理という名前が付けられることもある。しかし後述するようにハイゼンベルク自身による不確定性原理の物理的説明は、今日の量子力学の知識からは正しいものではない。 今日の量子力学において、不確定性原理でいう観測は日常語のそれとは意味が異なる用語であり、測定装置のような古典的物体と量子系との間の任意の相互作用を意味する。したがって例えば、実験者が測定装置に表示された値を実際に見たかどうかといった事とは無関係に定義される。また不確定性とは、物理量を観測した時に得られる測定値の標準偏差を表す。 不確定性原理が顕在化する現象の例としては、原子(格子)の零点振動(このためヘリウムは、常圧下では絶対零度まで冷却しても固化しない)、その他量子的なゆらぎ(例:遍歴電子系におけるスピン揺らぎ)などが挙げられる。
rdf:langString
In quantum mechanics, the uncertainty principle (also known as Heisenberg's uncertainty principle) is any of a variety of mathematical inequalities asserting a fundamental limit to the accuracy with which the values for certain pairs of physical quantities of a particle, such as position, x, and momentum, p, can be predicted from initial conditions. Such variable pairs are known as complementary variables or canonically conjugate variables; and, depending on interpretation, the uncertainty principle limits to what extent such conjugate properties maintain their approximate meaning, as the mathematical framework of quantum physics does not support the notion of simultaneously well-defined conjugate properties expressed by a single value. The uncertainty principle implies that it is in general not possible to predict the value of a quantity with arbitrary certainty, even if all initial conditions are specified. Introduced first in 1927 by the German physicist Werner Heisenberg, the uncertainty principle states that the more precisely the position of some particle is determined, the less precisely its momentum can be predicted from initial conditions, and vice versa. In the published 1927 paper, Heisenberg originally concluded that the uncertainty principle was pq ~ h using the full Planck constant. The formal inequality relating the standard deviation of position σx and the standard deviation of momentum σp was derived by Earle Hesse Kennard later that year and by Hermann Weyl in 1928: where ħ is the reduced Planck constant, h/(2π). Historically, the uncertainty principle has been confused with a related effect in physics, called the observer effect, which notes that measurements of certain systems cannot be made without affecting the system, that is, without changing something in a system. Heisenberg utilized such an observer effect at the quantum level (see below) as a physical "explanation" of quantum uncertainty. It has since become clearer, however, that the uncertainty principle is inherent in the properties of all wave-like systems, and that it arises in quantum mechanics simply due to the matter wave nature of all quantum objects. Thus, the uncertainty principle actually states a fundamental property of quantum systems and is not a statement about the observational success of current technology. Indeed the uncertainty principle has its roots in how we apply calculus to write the basic equations of mechanics. It must be emphasized that measurement does not mean only a process in which a physicist-observer takes part, but rather any interaction between classical and quantum objects regardless of any observer. Since the uncertainty principle is such a basic result in quantum mechanics, typical experiments in quantum mechanics routinely observe aspects of it. Certain experiments, however, may deliberately test a particular form of the uncertainty principle as part of their main research program. These include, for example, tests of number–phase uncertainty relations in superconducting or quantum optics systems. Applications dependent on the uncertainty principle for their operation include extremely low-noise technology such as that required in gravitational wave interferometers.
rdf:langString
In meccanica quantistica, il principio d'indeterminazione di Heisenberg stabilisce i limiti nella misurazione dei valori di grandezze fisiche coniugate o, nelle formulazioni più recenti e generali, incompatibili in un sistema fisico. Nella forma più nota, viene espresso dalla relazione: fra l'incertezza sulla posizione e quella sulla quantità di moto di una particella, dove è la costante di Planck ridotta. Enunciato nel 1927 da Werner Karl Heisenberg e confermato da innumerevoli esperimenti, rappresenta un concetto cardine della meccanica quantistica che ha sancito una radicale rottura rispetto alle leggi della meccanica classica.
rdf:langString
하이젠베르크 불확정성 원리(Heigenberg 不確定性原理, Heigenberg uncertainty principle)는 양자 역학에서 맞바꿈 관측가능량(commuting observables)이 아닌 두 개의 관측가능량(observable)을 동시에 측정할 때, 둘 사이의 정확도에는 물리적 한계가 있다는 원리다. 불확정성 원리는 양자역학에 대한 추가적인 가정이 아니고 양자역학의 으로부터 얻어진 근본적인 결과이다. 하이젠베르크의 불확정성 원리는 위치-운동량에 대한 불확정성 원리이며, 입자의 위치와 운동량을 동시에 정확히 측정할 수 없다는 것을 뜻한다. 위치가 정확하게 측정될수록 운동량의 퍼짐(또는 불확정도)은 커지게 되고 반대로 운동량이 정확하게 측정될수록 위치의 불확정도는 커지게 된다. 하이젠베르크의 불확정성 원리를 수학적으로 표현하면 다음과 같다. 임의의 양자상태에서 위치의 평균에 대한 제곱평균제곱근(RMS)편차 (X의 표준편차)는 운동량의 평균에 대한 제곱평균제곱근 편차 (P의 표준편차)는 두 표준편차의 곱은 다음과 같다. 즉, 위치와 운동량의 표준편차의 곱은 디랙 상수의 절반보다 같거나 크다. 또한, 수학적으로 다음과 같이 설명 할 수 있다: 에서, 푸리에 변환의 두 변수 사이에는 특정한 관계가 성립한다. 한편, 우리가 양자역학의 파동역학적 관점을 채택한다면, 파동함수의 변수를 여러 관측가능량들 중 하나로 설정할 수 있다. 그런데, 비 가환(non-commutation)인 두 관측가능량들 을 변수로 하는 두 파동함수들 사이에는 푸리에 변환 관계가 성립하며, 그러면 자명하게 두 관측가능량은 앞서 언급한 푸리에 변환의 두 변수 사이의 관계가 성립한다. 이 관계를 양자역학적으로 해석하면 하이젠베르크 불확정성 원리가 된다. 이는, 결국 이 원리는 푸리에 변환의 성질에 기인하므로, 하이젠베르크 불확정성 같은 성질은 양자역학에만 있는것이 아니며, 푸리에 변환으로 설명되는 모든 현상에 다 있다는 뜻이기도하다.
rdf:langString
Zasada nieoznaczoności (zasada nieoznaczoności Heisenberga lub zasada nieokreśloności) – reguła, która mówi, że istnieją takie pary wielkości, których nie da się jednocześnie zmierzyć z dowolną dokładnością. O wielkościach takich mówi się, że nie komutują. Akt pomiaru jednej wielkości wpływa na układ tak, że część informacji o drugiej wielkości jest tracona. Zasada nieoznaczoności nie wynika z niedoskonałości metod ani instrumentów pomiaru, lecz z samej natury rzeczywistości.
rdf:langString
De onzekerheidsrelatie van Heisenberg, ook het onzekerheidsprincipe van Heisenberg, door Werner Heisenberg in 1927 gepubliceerd, is een van de belangrijkste resultaten van de kwantummechanica. De relatie drukt uit dat er zogenaamde incommensurabele paren van grootheden bestaan, waarvoor geldt dat niet van beide grootheden de waarden tegelijkertijd exact vastgelegd kunnen worden of met een willekeurige mate van nauwkeurigheid bepaald kunnen worden. Een voorbeeld van een dergelijk paar is plaats en impuls, een ander voorbeeld is energie en tijd. Elke theorie die een kwantummechanisch systeem beschrijft moet deze relatie tussen een of meer paren geconjugeerde observabelen bevatten. Sommige fysici spreken liever over een onbepaaldheidsrelatie of over het onbepaaldheidsprincipe dan over een onzekerheidsrelatie als ze over deze fundamentele relatie spreken. In golffuncties die oplossingen zijn van Schrödingers golfvergelijking hebben de daaruit af te leiden plaats en impuls geen scherp gedefinieerde waarden, maar zijn zij stochastische variabelen met kansverdelingen die impliciet in de golfvergelijking besloten liggen. De kansverdelingen van die twee grootheden hangen met elkaar samen: als de standaardafwijking van de ene kleiner wordt, wordt die van de andere automatisch groter. Heisenberg formuleerde de ondergrens voor het product van standaarddeviaties voor de kansverdelingen van plaats en impuls als volgt: waarin de onzekerheid (standaardafwijking) in de plaats is, de onzekerheid in de impuls en de constante van Planck. De waarde van deze constante is gedefinieerd als exact 6,626 070 15 × 10−34 Js . Tegenwoordig schrijft men deze uitdrukking vaak met een aangepaste versie van de constante , de zogenaamde constante van Dirac , h-streep geheten: . De onzekerheidsrelatie van Heisenberg heeft belangrijke gevolgen in veel takken van de natuurkunde, op subatomaire schaal (kwantumfysica). Voor macroscopische voorwerpen, zoals stoelen, huizen of stuifmeelkorrels, geldt de relatie uiteraard ook, maar is de onzekerheid verwaarloosbaar doordat de constante van Planck zo klein is. Een belangrijk gevolg van de onzekerheidsrelatie is dat metingen altijd invloed hebben op het systeem. Wordt bijvoorbeeld zeer exact de plaats van een deeltje gemeten, dan zal hierdoor de impuls, en dus de snelheid, zeer onzeker worden. Een inperking van de plaats heeft hetzelfde effect. Een goed voorbeeld hiervan is een stroom elektronen die op een plaat met een klein gaatje valt. De elektronen die door het gaatje vliegen, hebben een kort moment een zeer exact bepaalde positie in het vlak van de plaat. Hieruit volgt dat hun impuls parallel aan de plaat zeer onzeker is; de stroom elektronen zal uiteen waaieren achter de plaat en vertoont dus diffractie. Een elektron heeft dus ook het karakter van een golf. Ook voor andere grootheden dan plaats en impuls geldt een vergelijkbaar verband. Van belang is de onzekerheidsrelatie voor tijd en energie Dit betekent dat de hoeveelheid energie in een systeem des te onzekerder is naarmate de tijdschaal waarop het systeem varieert kleiner is. Hierdoor kan er ook als het ware energie 'geleend' worden, wat onder meer aanleiding geeft tot het bestaan van virtuele deeltjes en het tunneleffect.
rdf:langString
Принцип неопределённости Гейзенбе́рга в квантовой механике — фундаментальное соображение (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих систему квантовых наблюдаемых, описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного полей). Более доступно он звучит так: чем точнее измеряется одна характеристика частицы, тем менее точно можно измерить вторую. Соотношение неопределённостей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней физической квантовой механики. Является следствием принципа корпускулярно-волнового дуализма.
rdf:langString
Em mecânica quântica, o princípio da incerteza (também chamado princípio da incerteza da Heisenberg), formulado em 1927 por Werner Heisenberg, é um enunciado que estabelece um limite fundamental para a precisão com que certos pares de propriedades de determinada partícula física, conhecidas como variáveis complementares (tais como posição e momento linear), podem ser conhecidos. No seu artigo de 1927, Heisenberg propõe que, em nível quântico, simultaneamente, quanto menor for a incerteza na medida da posição de uma partícula, maior será a incerteza do seu momento linear e vice-versa. Esses pares de variáveis são conhecidos como variáveis complementares ou variáveis conjugadas canonicamente e, dependendo da interpretação, o princípio da incerteza limita até que ponto tais propriedades conjugadas mantêm o seu significado aproximado, já que a estrutura matemática da mecânica quântica não apoia a noção de propriedades conjugadas simultaneamente bem definidas expressas por um único valor. O princípio da incerteza implica que geralmente não é possível prever o valor de uma quantidade com certeza arbitrária, mesmo se todas as condições iniciais forem especificadas. O princípio da incerteza é um dos aspectos mais conhecidos da física do século XX e é comumente apresentado como um exemplo claro de como a mecânica quântica se diferencia das premissas elementares das teorias físicas clássicas, porque, na mecânica clássica, quando conhecemos as condições iniciais, consegue-se determinar com precisão o movimento e a posição dos corpos de forma simultânea. Ainda que o princípio da incerteza tenha a sua validade restrita ao nível subatômico, ao inserir valores como indeterminação e probabilidade no campo do experimento empírico, tal princípio constitui uma transformação epistemológica fundamental para a ciência do século XX. Essa transformação conduziu à discrepâncias na interpretação do conteúdo físico, surgindo versões conceitualmente distintas para as relações de incerteza, podendo ser interpretadas como relações de incerteza ou indeterminação.
rdf:langString
Inom kvantfysiken anger Heisenbergs osäkerhetsprincip att det för ett objekt inte går att samtidigt känna till både position och rörelsemängd med en godtyckligt hög grad av noggrannhet utan att det finns en bestämbar undre gräns för osäkerheten; detta till skillnad från klassisk mekanik där varje partikel har ett bestämt läge och en bestämd rörelsemängd vid varje given tidpunkt. Principen är en av hörnstenarna inom kvantmekaniken, och namngavs av Werner Heisenberg 1927. Osäkerhetsprincipen förklaras ibland genom påståendet att en mätning av en partikels position nödvändigtvis orsakar en påverkan (störning) av partikelns rörelsemängd. Werner Heisenberg var först ut med den förklaringen. Detta beror emellertid inte på störningen, eftersom principen även gäller om positionen mäts på en kopia av systemet, medan rörelsemängden samtidigt mäts i det andra, ursprungliga systemet. En mer exakt definition är den att partikeln är en vågfunktion, inte ett punktliknande objekt, och kan inte ha både en väldefinierad position och rörelsemängd. Av detta skäl rekommenderas numera termen "Heisenbergs obestämbarhetsrelation" (eng: indeterminacy relations); någon osäkerhet råder alltså egentligen inte. Beakta till exempel följande analogi: antag att man har en tidsvariant signal, som en ljudvåg, och vill veta den exakta frekvensen för signalen i ett bestämt ögonblick. Detta är omöjligt. För att bestämma den exakta frekvensen måste man sampla signalen under en viss tid, och därmed förloras en viss grad av precision beträffande positionen. Med andra ord kan ett ljud inte ha både exakt tid, som i en kort puls, och en exakt frekvens, som i en kontinuerlig ton. Fas och frekvens för en våg i tidsplanet är analoga med position och rörelsemängd för en våg i rummet. Osäkerhetsprincipen är förknippad med ett annat kvantmekaniskt fenomen känt som vågfunktionskollaps i vilket själva observationen av en partikel tycks ändra ekvationerna som beskriver partikeln. Osäkerhetsprincipen anger att en partikel saknar ett fixerat värde för rörelsemängd och position, men att en partikel vid observation tycks inta ett distinkt värde för den kvantitet som mäts.
rdf:langString
Принцип невизначеності є фундаментальною засадою квантової механіки, яка стверджує, що принципово неможливо одночасно виміряти з довільною точністю координати й імпульси квантового об'єкта. Це твердження справедливе не лише щодо вимірювання, а й щодо теоретичної побудови квантового стану системи. Тобто, неможливо побудувати такий квантовий стан, в якому система одночасно характеризувалася б точними значеннями координати та імпульсу. Принцип невизначеності сформулював у 1927-му німецький фізик Вернер Гейзенберґ. Це стало важливим етапом у з'ясуванні закономірностей атомних явищ і побудови квантової механіки. Квантовомеханічний принцип невизначеності аналогічний твердженню з оптики про те, що монохроматичний пучок світла не можна сфокусувати точніше, ніж до розмірів порядку довжини хвилі. У квантовій механіці частинки, такі як електрони, протони чи нейтрони, теж мають хвильові властивості, тобто справедливий корпускулярно-хвильовий дуалізм. Через це електрон, протон чи будь-яку іншу частинку або фізичну систему, неможливо сфокусувати в просторі до розмірів менших за половину довжини хвилі.
rdf:langString
在量子力學裏,不確定性原理(uncertainty principle,又譯測不準原理)表明,粒子的位置與動量不可同時被確定,位置的不確定性越小,則動量的不確定性越大,反之亦然。對於不同的案例,不確定性的內涵也不一樣,它可以是觀察者對於某種數量的信息的缺乏程度,也可以是對於某種數量的測量誤差大小,或者是一個系綜的類似製備的系統所具有的統計學擴散數值。 維爾納·海森堡於1927年發表論文《論量子理論運動學與力學的物理內涵》給出這原理的原本啟發式論述,希望能夠成功地定性分析與表述簡單量子實驗的物理性質。這原理又稱為「海森堡不确定性原理」。同年稍後,嚴格地數學表述出位置與動量的不確定性關係式。兩年後,又將肯納德的關係式加以推廣。 类似的不确定性關係式也存在于能量和时间、角动量和角度等物理量之间。由於不確定性原理是量子力學的基要理論,很多一般實驗都時常會涉及到關於它的一些問題。有些實驗會特別檢驗這原理或類似的原理。例如,檢驗發生於超導系統或量子光學系統的「數字-相位不確定性原理」。對於不確定性原理的相關研究可以用來發展引力波干涉儀所需要的低噪聲科技。
rdf:langString
#F5FFFA
rdf:langString
#0073CF
xsd:integer
6
rdf:langString
:
xsd:nonNegativeInteger
131933