Ultrafilter
http://dbpedia.org/resource/Ultrafilter an entity of type: Software
Ultrafiltr je matematický pojem z oboru teorie množin.
rdf:langString
En el campo matemático de la teoría de conjuntos, un ultrafiltro de un conjunto X es una colección de subconjuntos de X, tal que, es un filtro y no puede agrandarse (como filtro).
rdf:langString
En mathématiques, et plus précisément en théorie des ensembles, un ultrafiltre sur un ensemble X est une collection de sous-ensembles de X qui est un filtre, et qui n'est pas contenue dans un filtre plus grand. On peut considérer un ultrafiltre comme étant une mesure (finiment additive), et alors tout sous-ensemble de X est, pour cette mesure, soit négligeable (de mesure 0), soit valant « presque tout » X (de mesure 1). Cette notion se généralise aux algèbres de Boole et aux ordres partiels, et a de nombreuses applications en théorie des modèles et en topologie.
rdf:langString
数学において、超フィルター(ちょうフィルター、英: ultrafilter)または極大フィルター(きょくだいフィルター、英: maximal filter)とは順序集合上で定義されたフィルターの中で極大なものをいう。特にブール代数上では超フィルターはに一致する。 超フィルターは位相空間論や集合論における最も基本的な概念の一つであり、また多くの分野に応用を持っている。冪集合は包含関係で自然に順序集合となる。 集合 X の冪集合 P(X) 上の超フィルターは単に X 上の超フィルターとも呼ばれる。X 上の超フィルターは X 上ですべての集合に対して定義された非自明な二値有限加法的測度と同一視することが出来る。この時 X 上の集合は測度の意味で殆ど全体(測度が 1)か殆ど元を含まない(測度が 0)のいずれかに分けられる。
rdf:langString
In teoria degli insiemi un ultrafiltro è un filtro proprio sull'insieme tale che ogni sottoinsieme di o il suo complemento appartiene ad , in formule Sia il concetto di filtro che di ultrafiltro furono introdotti da Henri Cartan nel 1937.
rdf:langString
Ультрафильтр на решётке — это максимальный собственный фильтр. Понятие ультрафильтра появилось в общей топологии, где оно используется для обобщения понятия сходимости на пространства с несчётной базой.
rdf:langString
Em matemática, especialmente na Teoria da ordem e na Teoria de conjuntos, um ultrafiltro é um filtro próprio maximal, ou seja, um filtro próprio que não está estritamente contido num outro filtro próprio. Ultrafiltros têm aplicações em topologia, teoria de modelos e outras áreas da matemática.
rdf:langString
Ультрафільтр (максимальний фільтр) — фільтр частково впорядкованої множини, для якого не існує фільтра в який він би включався. Поняття фільтра виникло в топології.
rdf:langString
Inom matematiken, framförallt i mängdteori och modellteori är begreppet ultrafilter ett sätt att formalisera idén om en "stor" delmängd av en mängd M.
rdf:langString
在数学领域集合论中,在集合 X 上的超滤子是作为极大滤子的 X 子集的搜集。超滤子可以被认为是有限可加性测度。那么 X 的所有子集要么被认为是“几乎所有”(有测度 1)要么被认为是“几乎没有”(有测度 0)。如果 A 是 X 的子集,则要么 A 要么 X\A 是超滤子的元素(这里 X\A 是 A 在 X 中的相对补集;就是说,X 的不在 A 中的所有元素的集合)。这个概念可以被推广到布尔代数甚至是一般偏序,并在集合论、模型论和拓扑学中有很多应用。
rdf:langString
Ein Ultrafilter ist in der Mathematik ein Mengenfilter auf einer Menge , so dass für jede Teilmenge von entweder selbst oder ihr Komplement Element des Mengenfilters ist. Ultrafilter sind somit genau diejenigen Mengenfilter, zu denen keine echte Verfeinerung existiert. Diese Definition von Ultrafiltern lässt sich von Mengenfiltern auf allgemeine Filter im Sinne der Verbandstheorie übertragen. Ultrafilter finden Anwendungen etwa in der Topologie und der Modelltheorie. Der zum Begriff des Ultrafilters duale Begriff ist der des Primideals.
rdf:langString
In the mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") is a certain subset of namely a maximal filter on that is, a proper filter on that cannot be enlarged to a bigger proper filter on Ultrafilters have many applications in set theory, model theory, topology and combinatorics.
rdf:langString
rdf:langString
Ultrafiltr
rdf:langString
Ultrafilter
rdf:langString
Ultrafiltro
rdf:langString
Ultrafiltre
rdf:langString
Ultrafiltro
rdf:langString
超フィルター
rdf:langString
초필터
rdf:langString
Ultrafiltro
rdf:langString
Ультрафильтр
rdf:langString
Ultrafilter
rdf:langString
Ultrafilter
rdf:langString
超滤子
rdf:langString
Ультрафільтр (математика)
xsd:integer
31911
xsd:integer
1116834173
xsd:integer
0
rdf:langString
ultrafilter
rdf:langString
Ultrafilter
rdf:langString
"Mathematical Logic 15, The Ultrafilter Theorem"
rdf:langString
Ultrafiltr je matematický pojem z oboru teorie množin.
rdf:langString
Ein Ultrafilter ist in der Mathematik ein Mengenfilter auf einer Menge , so dass für jede Teilmenge von entweder selbst oder ihr Komplement Element des Mengenfilters ist. Ultrafilter sind somit genau diejenigen Mengenfilter, zu denen keine echte Verfeinerung existiert. Diese Definition von Ultrafiltern lässt sich von Mengenfiltern auf allgemeine Filter im Sinne der Verbandstheorie übertragen. Ultrafilter mit der Eigenschaft, dass die Schnittmenge aller ihrer Elemente nichtleer ist, heißen fixierte Ultrafilter, Punktfilter oder Elementarfilter: Sie bestehen aus allen Teilmengen, die einen bestimmten Punkt enthalten. Alle Ultrafilter auf endlichen Mengen sind fixierte Ultrafilter. Fixierte Filter sind die einzigen explizit konstruierbaren Ultrafilter. Die zweite Art der Ultrafilter sind die freien Ultrafilter, für die die Schnittmenge aller ihrer Elemente die leere Menge ist. Ultrafilter finden Anwendungen etwa in der Topologie und der Modelltheorie. Der zum Begriff des Ultrafilters duale Begriff ist der des Primideals.
rdf:langString
En el campo matemático de la teoría de conjuntos, un ultrafiltro de un conjunto X es una colección de subconjuntos de X, tal que, es un filtro y no puede agrandarse (como filtro).
rdf:langString
En mathématiques, et plus précisément en théorie des ensembles, un ultrafiltre sur un ensemble X est une collection de sous-ensembles de X qui est un filtre, et qui n'est pas contenue dans un filtre plus grand. On peut considérer un ultrafiltre comme étant une mesure (finiment additive), et alors tout sous-ensemble de X est, pour cette mesure, soit négligeable (de mesure 0), soit valant « presque tout » X (de mesure 1). Cette notion se généralise aux algèbres de Boole et aux ordres partiels, et a de nombreuses applications en théorie des modèles et en topologie.
rdf:langString
In the mathematical field of order theory, an ultrafilter on a given partially ordered set (or "poset") is a certain subset of namely a maximal filter on that is, a proper filter on that cannot be enlarged to a bigger proper filter on If is an arbitrary set, its power set ordered by set inclusion, is always a Boolean algebra and hence a poset, and ultrafilters on are usually called ultrafilter on the set . An ultrafilter on a set may be considered as a finitely additive measure on . In this view, every subset of is either considered "almost everything" (has measure 1) or "almost nothing" (has measure 0), depending on whether it belongs to the given ultrafilter or not. Ultrafilters have many applications in set theory, model theory, topology and combinatorics.
rdf:langString
数学において、超フィルター(ちょうフィルター、英: ultrafilter)または極大フィルター(きょくだいフィルター、英: maximal filter)とは順序集合上で定義されたフィルターの中で極大なものをいう。特にブール代数上では超フィルターはに一致する。 超フィルターは位相空間論や集合論における最も基本的な概念の一つであり、また多くの分野に応用を持っている。冪集合は包含関係で自然に順序集合となる。 集合 X の冪集合 P(X) 上の超フィルターは単に X 上の超フィルターとも呼ばれる。X 上の超フィルターは X 上ですべての集合に対して定義された非自明な二値有限加法的測度と同一視することが出来る。この時 X 上の集合は測度の意味で殆ど全体(測度が 1)か殆ど元を含まない(測度が 0)のいずれかに分けられる。
rdf:langString
In teoria degli insiemi un ultrafiltro è un filtro proprio sull'insieme tale che ogni sottoinsieme di o il suo complemento appartiene ad , in formule Sia il concetto di filtro che di ultrafiltro furono introdotti da Henri Cartan nel 1937.
rdf:langString
Ультрафильтр на решётке — это максимальный собственный фильтр. Понятие ультрафильтра появилось в общей топологии, где оно используется для обобщения понятия сходимости на пространства с несчётной базой.
rdf:langString
Em matemática, especialmente na Teoria da ordem e na Teoria de conjuntos, um ultrafiltro é um filtro próprio maximal, ou seja, um filtro próprio que não está estritamente contido num outro filtro próprio. Ultrafiltros têm aplicações em topologia, teoria de modelos e outras áreas da matemática.
rdf:langString
Ультрафільтр (максимальний фільтр) — фільтр частково впорядкованої множини, для якого не існує фільтра в який він би включався. Поняття фільтра виникло в топології.
rdf:langString
Inom matematiken, framförallt i mängdteori och modellteori är begreppet ultrafilter ett sätt att formalisera idén om en "stor" delmängd av en mängd M.
rdf:langString
在数学领域集合论中,在集合 X 上的超滤子是作为极大滤子的 X 子集的搜集。超滤子可以被认为是有限可加性测度。那么 X 的所有子集要么被认为是“几乎所有”(有测度 1)要么被认为是“几乎没有”(有测度 0)。如果 A 是 X 的子集,则要么 A 要么 X\A 是超滤子的元素(这里 X\A 是 A 在 X 中的相对补集;就是说,X 的不在 A 中的所有元素的集合)。这个概念可以被推广到布尔代数甚至是一般偏序,并在集合论、模型论和拓扑学中有很多应用。
xsd:nonNegativeInteger
19394