Trend-stationary process

http://dbpedia.org/resource/Trend-stationary_process

トレンド定常(トレンドていじょう、英: trend stationary)であるとは、統計学における時系列分析において、確率過程が、その潜在的なトレンド(時間のみの関数)を取り除けば、定常過程となる場合を指す。 rdf:langString
In the statistical analysis of time series, a trend-stationary process is a stochastic process from which an underlying trend (function solely of time) can be removed, leaving a stationary process. The trend does not have to be linear. rdf:langString
rdf:langString トレンド定常
rdf:langString Trend-stationary process
xsd:integer 1512988
xsd:integer 965831834
rdf:langString In the statistical analysis of time series, a trend-stationary process is a stochastic process from which an underlying trend (function solely of time) can be removed, leaving a stationary process. The trend does not have to be linear. Conversely, if the process requires differencing to be made stationary, then it is called difference stationary and possesses one or more unit roots. Those two concepts may sometimes be confused, but while they share many properties, they are different in many aspects. It is possible for a time series to be non-stationary, yet have no unit root and be trend-stationary. In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent impact on the mean (i.e. no convergence over time).
rdf:langString トレンド定常(トレンドていじょう、英: trend stationary)であるとは、統計学における時系列分析において、確率過程が、その潜在的なトレンド(時間のみの関数)を取り除けば、定常過程となる場合を指す。
xsd:nonNegativeInteger 5925

data from the linked data cloud