Transversality (mathematics)
http://dbpedia.org/resource/Transversality_(mathematics) an entity of type: Country
In der Differentialtopologie bezeichnet Transversalität einen Begriff, der die gegenseitige Lage zweier Untermannigfaltigkeiten beschreibt. Transversalität beschreibt in gewissem Sinne das Gegenteil von Tangentialität und stellt den „Normalfall“ (siehe und Transversalitätssatz) dar.
rdf:langString
In matematica, e più precisamente in topologia differenziale, la trasversalità è una proprietà opposta alla tangenza. Viene definita nel contesto di curve, superfici o più generali varietà differenziabili contenute in un qualche spazio. La nozione di trasversalità fa uso del calcolo infinitesimale (in particolare, dello spazio tangente).
rdf:langString
数学において、横断性(おうだんせい,英: transversality)は、空間がどのように交わるかを記述する概念である。横断性は接することの「対極」と見ることができ、で役割を果たす。横断性は微分位相幾何学における一般の交わりの概念を定式化する。横断性は交点で交わっている空間の線型化を考えることで定義される。
rdf:langString
In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of intersection.
rdf:langString
미분기하학에서, 횡단성(橫斷性, 영어: transversality)은 두 부분 다양체 또는 (보다 일반적으로) 같은 공역을 갖는 두 함수 사이에 정의되는 대칭 관계이다. 횡단성은 작은 호모토피에 대하여 불변이며(안정성), 거의 모든 함수에 대하여 성립한다(일반성). 서로 횡단적인 두 부분 다양체의 교집합은 부분 다양체를 이룬다.
rdf:langString
Transversaliteit is een begrip uit de differentiaaltopologie, de tak van de wiskunde die gladde vervormingen van gekromde ruimten bestudeert. Intuïtief beschrijft het de "meest algemene" onderlinge ligging van twee deelruimten.
rdf:langString
Um ente geométrico é transversal quando o seu sentido é oblíquo em relação a determinado referente. Transversal é o nome dado à reta que cruza um par ou um feixe de retas paralelas. A reta transversal gera diferentes tipos de ângulos. Um plano pode ser transversal a uma superfície plana.
rdf:langString
Трансверсальность — условие общего положения на пересечение гладких многообразий.
rdf:langString
У математиці говорять, що многовиди M і N перетинаються трансверсально, якщо в кожній точці p їх перетину, відповідні дотичні простори і породжують дотичний простір початкового простору в точці p. Іншими словами, трансверсальність перетину многовидів є запереченням ситуації дотичності многовидів.
rdf:langString
En algèbre linéaire et en géométrie différentielle, la propriété de transversalité est un qualificatif pour l'intersection de sous-espaces ou de sous-variétés. Elle est en quelque sorte l'opposé de la notion de tangence. Deux sous-espaces vectoriels , d'un espace vectoriel sont dits transverses quand . Cette condition peut être réécrite, le cas échéant, en termes de codimension : . Deux sous-espaces affines , d'un espace affine sont dits transverses si leurs directions sont transverses[réf. nécessaire], c'est-à-dire si . Dans la suite, désignent les dimensions respectives de . Remarques :
rdf:langString
rdf:langString
Transversalität
rdf:langString
Transversalité
rdf:langString
Trasversalità
rdf:langString
横断性 (数学)
rdf:langString
횡단성
rdf:langString
Transversaliteit
rdf:langString
Transversal
rdf:langString
Transversality (mathematics)
rdf:langString
Трансверсальность
rdf:langString
Трансверсальність
xsd:integer
3299423
xsd:integer
1042162500
rdf:langString
In der Differentialtopologie bezeichnet Transversalität einen Begriff, der die gegenseitige Lage zweier Untermannigfaltigkeiten beschreibt. Transversalität beschreibt in gewissem Sinne das Gegenteil von Tangentialität und stellt den „Normalfall“ (siehe und Transversalitätssatz) dar.
rdf:langString
En algèbre linéaire et en géométrie différentielle, la propriété de transversalité est un qualificatif pour l'intersection de sous-espaces ou de sous-variétés. Elle est en quelque sorte l'opposé de la notion de tangence. Deux sous-espaces vectoriels , d'un espace vectoriel sont dits transverses quand . Cette condition peut être réécrite, le cas échéant, en termes de codimension : . Deux sous-espaces affines , d'un espace affine sont dits transverses si leurs directions sont transverses[réf. nécessaire], c'est-à-dire si . Deux sous-variétés et d'une variété différentielle sont dites transverses lorsque, pour tout point de , les espaces tangents et sont transverses dans l'espace tangent , c'est-à-dire si Dans la suite, désignent les dimensions respectives de . Remarques :
* La définition reste valable pour les variétés banachiques.
* Deux sous-variétés disjointes sont transverses.
* Si , alors la condition de transversalité ne peut être vérifiée que si les sous-variétés et sont disjointes. Théorème — Une intersection transverse et non vide est une sous-variété différentielle de dimension . On a donc dans ce cas les relations Par exemple, deux surfaces régulières de l'espace à trois dimensions sont transverses si et seulement si elles n'ont aucun point de tangence. Dans ce cas, leur intersection forme une courbe régulière (éventuellement vide).
rdf:langString
In matematica, e più precisamente in topologia differenziale, la trasversalità è una proprietà opposta alla tangenza. Viene definita nel contesto di curve, superfici o più generali varietà differenziabili contenute in un qualche spazio. La nozione di trasversalità fa uso del calcolo infinitesimale (in particolare, dello spazio tangente).
rdf:langString
数学において、横断性(おうだんせい,英: transversality)は、空間がどのように交わるかを記述する概念である。横断性は接することの「対極」と見ることができ、で役割を果たす。横断性は微分位相幾何学における一般の交わりの概念を定式化する。横断性は交点で交わっている空間の線型化を考えることで定義される。
rdf:langString
In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of intersection.
rdf:langString
미분기하학에서, 횡단성(橫斷性, 영어: transversality)은 두 부분 다양체 또는 (보다 일반적으로) 같은 공역을 갖는 두 함수 사이에 정의되는 대칭 관계이다. 횡단성은 작은 호모토피에 대하여 불변이며(안정성), 거의 모든 함수에 대하여 성립한다(일반성). 서로 횡단적인 두 부분 다양체의 교집합은 부분 다양체를 이룬다.
rdf:langString
Transversaliteit is een begrip uit de differentiaaltopologie, de tak van de wiskunde die gladde vervormingen van gekromde ruimten bestudeert. Intuïtief beschrijft het de "meest algemene" onderlinge ligging van twee deelruimten.
rdf:langString
Um ente geométrico é transversal quando o seu sentido é oblíquo em relação a determinado referente. Transversal é o nome dado à reta que cruza um par ou um feixe de retas paralelas. A reta transversal gera diferentes tipos de ângulos. Um plano pode ser transversal a uma superfície plana.
rdf:langString
Трансверсальность — условие общего положения на пересечение гладких многообразий.
rdf:langString
У математиці говорять, що многовиди M і N перетинаються трансверсально, якщо в кожній точці p їх перетину, відповідні дотичні простори і породжують дотичний простір початкового простору в точці p. Іншими словами, трансверсальність перетину многовидів є запереченням ситуації дотичності многовидів.
xsd:nonNegativeInteger
11271