Totally disconnected space

http://dbpedia.org/resource/Totally_disconnected_space an entity of type: Thing

Total unzusammenhängende Räume werden im mathematischen Teilgebiet der Topologie untersucht. In jedem topologischen Raum sind einelementige Teilmengen und die leere Menge zusammenhängend. Die total unzusammenhängenden Räume sind dadurch gekennzeichnet, dass es in ihnen keine weiteren zusammenhängenden Teilmengen gibt. Das wohl bekannteste Beispiel ist die Cantor-Menge. Total unzusammenhängende Räume treten in vielen mathematischen Theorien auf. rdf:langString
En mathématiques, plus précisément en topologie, un espace totalement discontinu est un espace topologique qui est « le moins connexe possible » au sens où il n'a pas de partie connexe non triviale : dans tout espace topologique, l'ensemble vide et les singletons sont connexes ; dans un espace totalement discontinu, ce sont les seules parties connexes. Un exemple populaire d'espace totalement discontinu est l'ensemble de Cantor. Un autre exemple, important en théorie algébrique des nombres, est le corps Qp des nombres p-adiques. rdf:langString
位相空間論やそれに関わる分野において、完全不連結空間 (totally disconnected space) は非自明な連結部分集合を持たないという意味で最も不連結な位相空間である。すべての位相空間において空集合と1点集合は連結である。完全不連結空間においてはこれらしか連結部分集合がない。 完全不連結空間の重要な例の1つはカントール集合である。別の例は p-進数体 Qp で、代数的整数論において重要な役割を果たす。 rdf:langString
일반위상수학에서 완전 분리 공간(完全分離空間, 영어: totally disconnected space)은 모든 점들이 각각 분리돼 있는 위상 공간이다. 연결 공간의 정반대에 해당하는 개념이다. rdf:langString
Przestrzeń całkowicie niespójna – przestrzeń topologiczna, która jest maksymalnie niespójna w tym sensie, iż nie ma nietrywialnych podzbiorów spójnych. W dowolnej przestrzeni topologicznej zbiór pusty i zbiory jednopunktowe są spójne; w przestrzeni całkowicie niespójnej są to jedyne zbiory spójne. rdf:langString
В топологии и связанных разделах математики вполне несвязное пространство (наследственно несвязное, дисперсное) — это топологическое пространство, которое не имеет нетривиальных связных подмножеств. В любом топологическом пространстве пустое множество и одноточечные множества — связные. Во вполне несвязном пространстве это единственные связные подмножества. Важным примером вполне несвязного пространства является множество Кантора. Другим примером, играющим ключевую роль в алгебраической теории чисел, является поле p-адических чисел . rdf:langString
在拓扑学和相关的数学分支中,完全不连通空间是没有非平凡连通子集的拓扑空间。在所有拓扑空间中空集和单点集合是连通的,而在完全不连通空间中它们是仅有的连通子集,在此意义上,完全不连通空间是极大不连通。 完全不连通空间的重要例子是康托尔集合。另一个例子是在代数数论中扮演关键角色的p进数的域 Qp。 rdf:langString
У топології цілком незв'язним простором називається топологічний простір, який не має нетривіальних зв'язаних підмножин. У будь-якому топологічному просторі порожня множина і одноточкові множини є зв'язаними. У цілком незв'язаному просторі вони є єдиними зв'язаними підмножинами. Важливим прикладом цілком незв'язаного простору є множина Кантора. Іншим прикладом, що відіграє ключову роль в алгебричній теорії чисел, є поле p-адичних чисел . rdf:langString
In topology and related branches of mathematics, a totally disconnected space is a topological space that is maximally disconnected, in the sense that it has no non-trivial connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) are connected; in a totally disconnected space, these are the only connected proper subsets. rdf:langString
rdf:langString Total unzusammenhängender Raum
rdf:langString Espace totalement discontinu
rdf:langString 완전 분리 공간
rdf:langString 完全不連結空間
rdf:langString Przestrzeń całkowicie niespójna
rdf:langString Вполне несвязное пространство
rdf:langString Totally disconnected space
rdf:langString Цілком незв'язний простір
rdf:langString 完全不连通空间
xsd:integer 303356
xsd:integer 1118414796
rdf:langString Total unzusammenhängende Räume werden im mathematischen Teilgebiet der Topologie untersucht. In jedem topologischen Raum sind einelementige Teilmengen und die leere Menge zusammenhängend. Die total unzusammenhängenden Räume sind dadurch gekennzeichnet, dass es in ihnen keine weiteren zusammenhängenden Teilmengen gibt. Das wohl bekannteste Beispiel ist die Cantor-Menge. Total unzusammenhängende Räume treten in vielen mathematischen Theorien auf.
rdf:langString En mathématiques, plus précisément en topologie, un espace totalement discontinu est un espace topologique qui est « le moins connexe possible » au sens où il n'a pas de partie connexe non triviale : dans tout espace topologique, l'ensemble vide et les singletons sont connexes ; dans un espace totalement discontinu, ce sont les seules parties connexes. Un exemple populaire d'espace totalement discontinu est l'ensemble de Cantor. Un autre exemple, important en théorie algébrique des nombres, est le corps Qp des nombres p-adiques.
rdf:langString In topology and related branches of mathematics, a totally disconnected space is a topological space that is maximally disconnected, in the sense that it has no non-trivial connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) are connected; in a totally disconnected space, these are the only connected proper subsets. An important example of a totally disconnected space is the Cantor set, which is homeomorphic to the set of p-adic integers. Another example, playing a key role in algebraic number theory, is the field Qp of p-adic numbers.
rdf:langString 位相空間論やそれに関わる分野において、完全不連結空間 (totally disconnected space) は非自明な連結部分集合を持たないという意味で最も不連結な位相空間である。すべての位相空間において空集合と1点集合は連結である。完全不連結空間においてはこれらしか連結部分集合がない。 完全不連結空間の重要な例の1つはカントール集合である。別の例は p-進数体 Qp で、代数的整数論において重要な役割を果たす。
rdf:langString 일반위상수학에서 완전 분리 공간(完全分離空間, 영어: totally disconnected space)은 모든 점들이 각각 분리돼 있는 위상 공간이다. 연결 공간의 정반대에 해당하는 개념이다.
rdf:langString Przestrzeń całkowicie niespójna – przestrzeń topologiczna, która jest maksymalnie niespójna w tym sensie, iż nie ma nietrywialnych podzbiorów spójnych. W dowolnej przestrzeni topologicznej zbiór pusty i zbiory jednopunktowe są spójne; w przestrzeni całkowicie niespójnej są to jedyne zbiory spójne.
rdf:langString В топологии и связанных разделах математики вполне несвязное пространство (наследственно несвязное, дисперсное) — это топологическое пространство, которое не имеет нетривиальных связных подмножеств. В любом топологическом пространстве пустое множество и одноточечные множества — связные. Во вполне несвязном пространстве это единственные связные подмножества. Важным примером вполне несвязного пространства является множество Кантора. Другим примером, играющим ключевую роль в алгебраической теории чисел, является поле p-адических чисел .
rdf:langString 在拓扑学和相关的数学分支中,完全不连通空间是没有非平凡连通子集的拓扑空间。在所有拓扑空间中空集和单点集合是连通的,而在完全不连通空间中它们是仅有的连通子集,在此意义上,完全不连通空间是极大不连通。 完全不连通空间的重要例子是康托尔集合。另一个例子是在代数数论中扮演关键角色的p进数的域 Qp。
rdf:langString У топології цілком незв'язним простором називається топологічний простір, який не має нетривіальних зв'язаних підмножин. У будь-якому топологічному просторі порожня множина і одноточкові множини є зв'язаними. У цілком незв'язаному просторі вони є єдиними зв'язаними підмножинами. Важливим прикладом цілком незв'язаного простору є множина Кантора. Іншим прикладом, що відіграє ключову роль в алгебричній теорії чисел, є поле p-адичних чисел .
xsd:nonNegativeInteger 5890

data from the linked data cloud