Torus

http://dbpedia.org/resource/Torus an entity of type: Thing

Torus (též anuloid) je rotační plocha, která vznikne otáčením kružnice kolem osy, která leží ve stejné rovině a nemá s ní společné body. Tento tvar má například vzdušnice (duše) pneumatiky nebo nafukovací kruh. V architektuře označuje torus (česky obloun) oblý kruhový výstupek hlavice sloupu, protikladem je trochilus, výžlabek. rdf:langString
الطارة (أو السطح الحلقي) في الهندسة هو سطح دوراني في الفضاء الإقليدي ينتج بدوران دائرة حول خط مستقيم rdf:langString
Sa gheoiméadracht, is dromchla imrothlaithe é tóras , taoschnó a thugtar air sa ghnáthchaint, a ghintear trí chiorcal a imrothlú i spás tríthoiseach thart ar ais atá ar comhphlána leis an gciorcal.Mura ndéanann an ais imrothlaithe teagmháil leis an gciorcal, bíonn se i bhfoirm fáinne ag an dromchla agus tugtar tóras imrothlaithe air. Má tá an ais imrothlaithe tadhlaíoch leis an gciorcal, is tóras adhairce é. Má théann an ais imrothlaithe dhá uair tríd an gciorcal, is tóras fearsaide é an dromchla. Má théann an ais imrothlaithe trí lár an chiorcail, is tóras díchineálach é an dromchla, sféar déchlúdaithe. Mura ciorcal é an cuar imrothlach, is cruth gaolmhar é an dromchla, toróid. rdf:langString
初等幾何学におけるトーラス(英: torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 S1 × S1(に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた S1 × S1 に同相な図形の総称として用いられ、種数 1 の閉曲面(コンパクト)として特徴づけられる。このようなトーラスは R3 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 R2 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは R3 では不可能で、R4 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。 rdf:langString
기하학에서 원환면(圓環面) 또는 토러스(영어: torus)란 원을 삼차원 공간 상에서 원을 포함하는 평면 위의 직선을 축으로 회전하여 만든 회전면(surface of revolution)이다. 대부분의 교과서에서는 이 직선이 원과 만나지 않음을 가정한다. 원환면을 표면으로 하는 입체는 도넛의 모양을 닮게 되는데 이를 원환체(圓環體) 또는 토로이드(toroid)라고 한다. 위상수학에서는 원환면은 두 원의 곱집합 과 위상동형이다. 또한 종수(genus) 2의 2차원 콤팩트 다양체(compact 2-manifold)이기도 하다. 원환면은 삼차원 유클리드 공간에 매립(embed) 된다. 영어명 ‘토러스(torus)’는 ‘부풂’ 또는 ‘쿠션’을 의미하는 라틴어 단어 ‘토루스(tŏrus)’에서 유래하였다. rdf:langString
In geometria il toro (dal latino torus, cuscino a forma di ciambella) è una superficie di rotazione ottenuta dalla rivoluzione di una circonferenza in uno spazio tridimensionale intorno a un asse ad essa complanare. rdf:langString
Torus – dwuwymiarowa powierzchnia obrotowa zanurzalna w przestrzeni trójwymiarowej, powstała przez obrót okręgu wokół prostej leżącej w płaszczyźnie tego okręgu i nieprzecinającej go. Często oznacza się go symbolem lub Wyobrażeniem torusa może być napompowana dętka rowerowa lub powierzchnia obwarzanka. rdf:langString
Toro ou toróide é um espaço topológico homeomorfo ao produto de dois círculos. Apresenta o formato aproximado de uma câmara de pneu. Em geometria, pode ser definido como o lugar geométrico tridimensional formado pela rotação de uma superfície circular plana de raio r, em torno de uma circunferência de raio R. rdf:langString
在几何上,一个环面是一个手镯形状的旋转曲面,由一个圆绕一个和该圆共面的一个轴回转所生成。球面可以视为环面的特殊情况,也就是旋转轴是该圆的直径时。若转轴和圆不相交,圆面中间有一个洞,就像一个手镯、甜甜圈、呼啦圈,或者一个充了气的轮胎。另一个情况,也就是轴是圆的一根弦的时候,就产生一个挤扁了的球面,就像一个圆的座垫那样。英文Torus曾是拉丁文的这种形状的座垫。 rdf:langString
Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её. Обобщенно, тор — топологическое пространство или гладкое многообразие, эквивалентное такой поверхности. Иногда не требуют, чтобы ось вращения не пересекала образующую окружность. В таком случае, если ось вращения пересекает образующую окружность (или касается её), то тор называют закрытым, иначе открытым. Понятие тора определяется и в многомерном случае. Тор является примером коммутативной алгебраической группы и примером группы Ли. rdf:langString
Тор — геометричне тіло, що утворюється обертанням кола навколо осі, котра лежить у одній площині з колом, але не перетинає його. Форма тора зовні нагадує бублик. rdf:langString
En geometria, un tor és una superfície de revolució generada per un cercle que gira al voltant d'un eix coplanar a ell. Vulgarment, es coneix amb el nom de forma de dònut. És un cas particular del toroide, al qual la trajectòria del cercle és també circular. D'altra banda, l'esfera és un cas particular de tor, obtinguda quan l'eix de rotació és un diàmetre del cercle. Si l'eix de rotació no interseca el cercle, el tor té un forat al centre i s'assembla a un anell. L'altre cas, quan l'eix de rotació és una corda del cercle, produeix una espècie d'esfera aixafada semblant a un coixí rodó. rdf:langString
Ein Torus (Plural Tori, von lateinisch torus) ist ein mathematisches Objekt aus der Geometrie und der Topologie. Er ist eine wulstartig geformte Fläche mit einem Loch, hat also die Gestalt eines Rettungsrings, Fahrradschlauchs oder Donuts. Beispiele für im dreidimensionalen Raum eingebettete Tori sind die Rotationstori. Rotationstori sind Rotationsflächen, die man erhält, indem man einen Kreis um eine Achse rotieren lässt, die in der Kreisebene liegt und den Kreis nicht schneidet. Falls man nicht nur die Kreislinie, sondern die gesamte Kreisfläche rotieren lässt, erhält man einen Volltorus. rdf:langString
Στη γεωμετρία, o τόρος είναι ένα στερεό εκ περιστροφής που παράγεται από την περιστροφή ενός κύκλου στον τρισδιάστατο χώρο γύρω από έναν άξονα με τον κύκλο. Συνήθως ο άξονας δεν τέμνει ούτε εφάπτεται με τον κύκλο, οπότε σε αυτή την περίπτωση η επιφάνεια έχει σχήμα δακτυλιοειδές και καλείται δακτυλιοειδής τόρος, ή απλά τόρος και υπονοείται σιωπηρά ότι έχει δακτυλιοειδές σχήμα. Ορισμένες φορές καλείται (λανθασμένα) δακτύλιος, ωστόσο ο δακτύλιος είναι ένα δισδιάστατο επίπεδο σχήμα διαφορετικό από τον τρισδιάστατο τόρο. Η λέξη τόρος προέρχεται από την λατινική λέξη torus, που σημαίνει μαξιλάρι. rdf:langString
Toro estas ringoforma surfaco formita de cirklo, kiu turniĝas ĉirkaŭ akso samebena. Se la akso sekcas la cirklon (estas ŝnuro de la cirklo), naskiĝas surfaco, kiu ne aspektas ringo sed pli similas al kuseno kun maldika mezo. En la tre speciala kazo kiam la akso trairas la centron de la cirklo (estas ties diametro), naskiĝas sfero. Normale oni nomas toro nur la surfacon kiu havas formon de ringo, sed eblas rigardi la kusenformaĵon kaj la sferon kiel specialajn kazojn de toro. La geometria parametra ekvacio de toro estas: La figuro formita el spaco limigita de toro nomiĝas rdf:langString
En geometría, un toro es un tipo concreto de toroide cuya superficie de revolución es generada por una circunferencia que gira alrededor de una recta exterior coplanaria (en su plano y que no la corta) o, llanamente, la superficie tridimensional que resulta de hacer girar una circunferencia alrededor de un eje que no la corta. La palabra «toro» proviene del latín torus, que significa «protuberancia», «elevación curva» (relacionado con latín "sterno" y griego στορέννυμι, romanizado storénnymi) y que ya en latín adquiere sentidos técnicos para designar objetos con esta forma geométrica específica, por ejemplo en arquitectura (Vitr.3.3.8), donde designa el «bocel» o «murecillo», que es una moldura redondeada de la base, con forma de hogaza de pan.​Muchos objetos cotidianos tienen forma de tor rdf:langString
Geometrian, torua (latinezko torus hitzetik) biraketa-gainazal bat da, zirkunferentzia batek haren dagoen zuzen baten inguruan bira egitean sortzen duena. Hitz arruntagoetan, esan liteke pneumatiko baten aire-ganberaren forma duela toruak. Toroidearen kasu berezi bat da. Definizio orokorrago baten arabera, toruaren sortzailea, zirkunferentzia bat ez ezik, elipse bat edo beste kurba koniko bat ere izan daiteke. rdf:langString
Torus (Tori dalam bentuk jamak) dalam ilmu geometri adalah suatu permukaan yang tercipta akibat gerakan rotasi atau revolusi dari suatu lingkaran yang berputar dalam ruang tiga dimensi (dengan sumbu putar yang berada secara koplanar/se-bidang dengan lingkaran itu sendiri). Pada umumnya, sumbu putarnya tidak menyentuh lingkaran tersebut, sehingga akan membentuk suatu cincin atau torus. Dalam bahasa latin, torus berarti bantal. Persamaan parametrik dari sebuah torus didefinisikan sebagai: di mana rdf:langString
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a toroid, as in a square toroid. rdf:langString
Un tore est un solide géométrique représentant un tube courbé refermé sur lui-même. Le terme « tore » comporte différentes acceptions plus spécifiques selon le contexte : * en ingénierie ou en géométrie élémentaire, un tore est un solide de révolution de l'espace obtenu à partir d'un cercle, ou bien sa surface. Une chambre à air, une bouée, certains joints d'étanchéité ou encore certains beignets (les donuts nord-américains) ont ainsi une forme plus ou moins torique ; * en architecture, un tore correspond à une moulure ronde, semi-cylindrique. Article détaillé : Tore (architecture). * en mathématiques, plus particulièrement en topologie, un tore est un quotient d'un espace vectoriel réel de dimension finie par un réseau, ou tout espace topologique qui lui est homéomorphe. La surface du rdf:langString
Een torus (meervoud: tori of torussen) is een driedimensionaal omwentelingslichaam, dat ontstaat door een cirkel te wentelen om een lijn die zich in het vlak van de cirkel bevindt. Als deze lijn de cirkel niet snijdt of raakt, is het resultaat een open torus welke ringvormig is, of vergelijkbaar met de binnenband van een fiets. Het oppervlak van een open torus is: 4 π2 r R De inhoud van een open torus is: 2 π2 r2 R De cartesische vergelijking wordt gegeven door: Een mogelijke parametrisatie van een torus rond de z-as is waar zowel u als v variëren van 0 tot 2π. rdf:langString
Torus är en matematisk kropp vars utseende i den vanliga tredimensionella varianten vanligen liknas vid en flottyrmunk. Den enklaste torusen inom matematiken är en tvådimensionell badringsformad yta, en delmängd av , som brukar betecknas T ². Liksom sfären är den kompakt, medan den inte är enkelt sammanhängande. Dess Eulerkarakteristik är 0, dess genus är 1. Exempel på parametrisering: x = (R + r cos(ψ)) cos(φ)y = (R + r cos(ψ)) sin(φ)z = r sin(ψ) (där 0 < r < R) Ett alternativt betraktelsesätt är att låta torusen vara en delmängd av . Parametriseringen blir då något enklare: rdf:langString
rdf:langString طارة (رياضيات)
rdf:langString Torus
rdf:langString Tor (geometria)
rdf:langString Torus
rdf:langString Torus
rdf:langString Τόρος
rdf:langString Toro (geometrio)
rdf:langString Toro (geometría)
rdf:langString Toru
rdf:langString Tore
rdf:langString Tóras
rdf:langString Torus
rdf:langString Toro (geometria)
rdf:langString 원환면
rdf:langString トーラス
rdf:langString Torus
rdf:langString Torus (matematyka)
rdf:langString Тор (поверхность)
rdf:langString Toro (topologia)
rdf:langString Torus
rdf:langString 环面
rdf:langString Тор (геометрія)
xsd:integer 74800
xsd:integer 1121172437
rdf:langString horn
rdf:langString ring
rdf:langString spindle
rdf:langString : horn torus
rdf:langString : ring torus or anchor ring
rdf:langString : self-intersecting spindle torus
rdf:langString vertical
rdf:langString Bottom-halves and
rdf:langString vertical cross-sections
rdf:langString Standard_torus-horn.png
rdf:langString Standard_torus-ring.png
rdf:langString Standard_torus-spindle.png
xsd:integer 230
rdf:langString Torus (též anuloid) je rotační plocha, která vznikne otáčením kružnice kolem osy, která leží ve stejné rovině a nemá s ní společné body. Tento tvar má například vzdušnice (duše) pneumatiky nebo nafukovací kruh. V architektuře označuje torus (česky obloun) oblý kruhový výstupek hlavice sloupu, protikladem je trochilus, výžlabek.
rdf:langString En geometria, un tor és una superfície de revolució generada per un cercle que gira al voltant d'un eix coplanar a ell. Vulgarment, es coneix amb el nom de forma de dònut. És un cas particular del toroide, al qual la trajectòria del cercle és també circular. D'altra banda, l'esfera és un cas particular de tor, obtinguda quan l'eix de rotació és un diàmetre del cercle. Si l'eix de rotació no interseca el cercle, el tor té un forat al centre i s'assembla a un anell. L'altre cas, quan l'eix de rotació és una corda del cercle, produeix una espècie d'esfera aixafada semblant a un coixí rodó. Segons una definició més àmplia, el generador del tor no ha de ser necessàriament un cercle, sinó que pot ser una el·lipse o qualsevol altra corba cònica.
rdf:langString الطارة (أو السطح الحلقي) في الهندسة هو سطح دوراني في الفضاء الإقليدي ينتج بدوران دائرة حول خط مستقيم
rdf:langString Ein Torus (Plural Tori, von lateinisch torus) ist ein mathematisches Objekt aus der Geometrie und der Topologie. Er ist eine wulstartig geformte Fläche mit einem Loch, hat also die Gestalt eines Rettungsrings, Fahrradschlauchs oder Donuts. Beispiele für im dreidimensionalen Raum eingebettete Tori sind die Rotationstori. Rotationstori sind Rotationsflächen, die man erhält, indem man einen Kreis um eine Achse rotieren lässt, die in der Kreisebene liegt und den Kreis nicht schneidet. Falls man nicht nur die Kreislinie, sondern die gesamte Kreisfläche rotieren lässt, erhält man einen Volltorus. Anders ausgedrückt wird ein Rotationstorus aus derjenigen Menge an Punkten gebildet, die von einer Kreislinie mit Radius den festen Abstand mit haben. Ein Torus kann auch durch Identifizieren der Seiten eines Parallelogramms konstruiert werden. Dabei wird die rechte Kante des Parallelogramms mit seiner linken Kante und die obere mit der unteren Kante verheftet. Diese Topologie benutzen auch viele Computerspiele: Verlässt ein Spielobjekt auf einer Seite das Spielfeld, so taucht es auf der gegenüberliegenden Seite wieder auf. Beide Konstruktionen sind Spezialfälle der allgemeinen mathematischen Definition, die einen Torus als das topologische Produkt zweier Kreise definiert. Dieser Begriff spielt in zahlreichen Gebieten der Mathematik eine Rolle, neben Topologie und Differentialgeometrie ist er unter anderem in der Fourier-Analysis, der Theorie dynamischer Systeme (invariante Tori in der Himmelsmechanik), der Funktionentheorie und der Theorie elliptischer Kurven von Bedeutung. Rotationstori liefern eine konkrete rotationssymmetrische Realisierung dieser Fläche im dreidimensionalen euklidischen Raum. Von besonderer Wichtigkeit für viele Anwendungen in theoretischer Mathematik und Physik sind sogenannte flache Tori und ihre Einbettung in den vierdimensionalen Raum. Diese haben die Krümmung null und die maximal mögliche Symmetrie. Der Torus ist eine zweidimensionale Fläche. Allgemeiner betrachtet man in der Mathematik auch den -Torus, eine den zweidimensionalen Torus verallgemeinernde -dimensionale Mannigfaltigkeit. Davon abweichend finden sich in der deutschsprachigen Literatur gelegentlich auch die Bezeichnungen Doppeltorus, Tripeltorus etc. für Flächen mit zwei, drei und mehr Löchern.
rdf:langString Στη γεωμετρία, o τόρος είναι ένα στερεό εκ περιστροφής που παράγεται από την περιστροφή ενός κύκλου στον τρισδιάστατο χώρο γύρω από έναν άξονα με τον κύκλο. Συνήθως ο άξονας δεν τέμνει ούτε εφάπτεται με τον κύκλο, οπότε σε αυτή την περίπτωση η επιφάνεια έχει σχήμα δακτυλιοειδές και καλείται δακτυλιοειδής τόρος, ή απλά τόρος και υπονοείται σιωπηρά ότι έχει δακτυλιοειδές σχήμα. Ορισμένες φορές καλείται (λανθασμένα) δακτύλιος, ωστόσο ο δακτύλιος είναι ένα δισδιάστατο επίπεδο σχήμα διαφορετικό από τον τρισδιάστατο τόρο. Όταν ο άξονας εφάπτεται με τον κύκλο, η επιφάνεια που προκύπτει ονομάζεται κερατοειδής τόρος, όταν ο άξονας συμπίπτει με μια χορδή του κύκλου, τότε ονομάζεται ατρακτοειδής τόρος (ή αξονικός τόρος). Μια περίπτωση τόρου έχουμε όταν ο άξονας συμπίπτει με τη διάμετρο του κύκλου, οπότε παράγεται απλώς η επιφάνεια μιας 2-σφαίρας. Ο δακτυλιοειδής τόρος οριοθετεί ένα γεωμετρικό στερεό που λέγεται , ή δακτυλιοειδή τοροειδές. Διάφορα αντικείμενα που έχουν σχήμα που μοιάζει με το τοροειδές είναι για παράδειγμα τα τοροειδή πηνία, οι μετασχηματιστές, κάποια σωσίβια (κενά στο εσωτερικό τους), κ.λπ. Ο τόρος δεν θα πρέπει να συγχέεται με τον , ο οποίος σχηματίζεται από την περιστροφή ενός δίσκου, αντί ενός κύκλου, γύρω από έναν άξονα. Συνεπώς, είναι ο τόρος μαζί με τον όγκο στο εσωτερικό του. Διάφορα αντικείμενα που προσεγγίζουν τον στερεό τόρο είναι το κουλούρι, το ντόνατ, κάποια σωσίβια (χωρίς κενό το εσωτερικό τους), κ.λπ. Στην τοπολογία, ο δακτυλιοειδής τόρος είναι ομοιομορφικός προς το καρτεσιανό δύο κύκλων (S1 × S1), που τελευταία θεωρείται ως ο ορισμός του τόρου στον τομέα αυτό. Ο τόρος από τοπολογική άποψη είναι μια συνεκτική 2-πολλαπλότητα γένους 1. Ο δακτυλιοειδής τόρος είναι ένας τρόπος για να ενσωματωθεί αυτός ο χώρος στον τρισδιάστατο Ευκλείδειο χώρο, αλλά ένας άλλος τρόπος για να γίνει αυτό είναι το καρτεσιανό γινόμενο της ενσωμάτωσης του S1 στο επίπεδο. Αυτό παράγει ένα γεωμετρικό αντικείμενο που ονομάζεται , μια επιφάνεια . Η λέξη τόρος προέρχεται από την λατινική λέξη torus, που σημαίνει μαξιλάρι.
rdf:langString Toro estas ringoforma surfaco formita de cirklo, kiu turniĝas ĉirkaŭ akso samebena. Se la akso sekcas la cirklon (estas ŝnuro de la cirklo), naskiĝas surfaco, kiu ne aspektas ringo sed pli similas al kuseno kun maldika mezo. En la tre speciala kazo kiam la akso trairas la centron de la cirklo (estas ties diametro), naskiĝas sfero. Normale oni nomas toro nur la surfacon kiu havas formon de ringo, sed eblas rigardi la kusenformaĵon kaj la sferon kiel specialajn kazojn de toro. La geometria parametra ekvacio de toro estas: Kie R estas distanco de cirkla centro ĝis akso de rotacio kaj r estas radiuso de la cirklo. Neparametra ekvacio de la samaj valoroj estas: En topologio, toro estas la produto de pluraj cirkloj. La surfaco de ringa formo estas produto de du cirkloj S¹ × S¹. La figuro formita el spaco limigita de toro nomiĝas
rdf:langString Geometrian, torua (latinezko torus hitzetik) biraketa-gainazal bat da, zirkunferentzia batek haren dagoen zuzen baten inguruan bira egitean sortzen duena. Hitz arruntagoetan, esan liteke pneumatiko baten aire-ganberaren forma duela toruak. Toroidearen kasu berezi bat da. Zuzenak (errotazio-ardatza) zirkunferentzia ukitzen edo ebakitzen ez badu, toruak hutsune bat du erdian, eta eraztun baten antza du. Bestela, errotazio-ardatza zirkunferentziaren korda bat bada, esfera zapal baten antzeko zerbait sortzen da, kuxin biribil baten itxurakoa; are gehiago: esfera toruaren kasu berezi bat da, errotazio-ardatza zirkunferentziaren diametro bat denean. Definizio orokorrago baten arabera, toruaren sortzailea, zirkunferentzia bat ez ezik, elipse bat edo beste kurba koniko bat ere izan daiteke.
rdf:langString En geometría, un toro es un tipo concreto de toroide cuya superficie de revolución es generada por una circunferencia que gira alrededor de una recta exterior coplanaria (en su plano y que no la corta) o, llanamente, la superficie tridimensional que resulta de hacer girar una circunferencia alrededor de un eje que no la corta. La palabra «toro» proviene del latín torus, que significa «protuberancia», «elevación curva» (relacionado con latín "sterno" y griego στορέννυμι, romanizado storénnymi) y que ya en latín adquiere sentidos técnicos para designar objetos con esta forma geométrica específica, por ejemplo en arquitectura (Vitr.3.3.8), donde designa el «bocel» o «murecillo», que es una moldura redondeada de la base, con forma de hogaza de pan.​Muchos objetos cotidianos tienen forma de toro: un dónut, una cámara de neumático, etc.
rdf:langString Sa gheoiméadracht, is dromchla imrothlaithe é tóras , taoschnó a thugtar air sa ghnáthchaint, a ghintear trí chiorcal a imrothlú i spás tríthoiseach thart ar ais atá ar comhphlána leis an gciorcal.Mura ndéanann an ais imrothlaithe teagmháil leis an gciorcal, bíonn se i bhfoirm fáinne ag an dromchla agus tugtar tóras imrothlaithe air. Má tá an ais imrothlaithe tadhlaíoch leis an gciorcal, is tóras adhairce é. Má théann an ais imrothlaithe dhá uair tríd an gciorcal, is tóras fearsaide é an dromchla. Má théann an ais imrothlaithe trí lár an chiorcail, is tóras díchineálach é an dromchla, sféar déchlúdaithe. Mura ciorcal é an cuar imrothlach, is cruth gaolmhar é an dromchla, toróid.
rdf:langString Torus (Tori dalam bentuk jamak) dalam ilmu geometri adalah suatu permukaan yang tercipta akibat gerakan rotasi atau revolusi dari suatu lingkaran yang berputar dalam ruang tiga dimensi (dengan sumbu putar yang berada secara koplanar/se-bidang dengan lingkaran itu sendiri). Pada umumnya, sumbu putarnya tidak menyentuh lingkaran tersebut, sehingga akan membentuk suatu cincin atau torus. Bentuk torus yang lain adalah torus tanduk, yang timbul jika sumbu putarnya tegak lurus terhadap lingkaran yang diputar (kasus spesial terjadi jika sumbu putar berada di tengah-tengah lingkaran, sehingga membentuk permukaan bola). Bentuk torus yang solid (padat) sering disebut sebagai yang banyak dijumpai pada bentuk induktor dan transformator listrik. Contoh lain dari objek berbentuk toroid adalah kue donat, (bola) pelampung penyelemat diri di air laut (yang tersedia di kapal laut maupun pesawat udara), cincin O dan cincin Vortex. Dalam bahasa latin, torus berarti bantal. Persamaan parametrik dari sebuah torus didefinisikan sebagai: di mana u, v berada pada interval [0, 2π),R adalah jarak antara pusat torus dan pusat lingkaran (tube)r adalah radius dari lingkaran yang diputar (tube).
rdf:langString Un tore est un solide géométrique représentant un tube courbé refermé sur lui-même. Le terme « tore » comporte différentes acceptions plus spécifiques selon le contexte : * en ingénierie ou en géométrie élémentaire, un tore est un solide de révolution de l'espace obtenu à partir d'un cercle, ou bien sa surface. Une chambre à air, une bouée, certains joints d'étanchéité ou encore certains beignets (les donuts nord-américains) ont ainsi une forme plus ou moins torique ; * en architecture, un tore correspond à une moulure ronde, semi-cylindrique. Article détaillé : Tore (architecture). * en mathématiques, plus particulièrement en topologie, un tore est un quotient d'un espace vectoriel réel de dimension finie par un réseau, ou tout espace topologique qui lui est homéomorphe. La surface du solide de révolution décrit ci-dessus est généralement homéomorphe à (R/Z)×(R/Z), exception faite des cas dégénérés. * en électronique, un tore magnétique a constitué l'élément de base des mémoires des ordinateurs de seconde génération. * en astronomie, un tore peut être un anneau planétaire ou satellitaire .
rdf:langString In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a toroid, as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a solid torus, which is formed by rotating a disk, rather than a circle, around an axis. A solid torus is a torus plus the volume inside the torus. Real-world objects that approximate a solid torus include O-rings, non-inflatable lifebuoys, ring doughnuts, and bagels. In topology, a ring torus is homeomorphic to the Cartesian product of two circles: S1 × S1, and the latter is taken to be the definition in that context. It is a compact 2-manifold of genus 1. The ring torus is one way to embed this space into Euclidean space, but another way to do this is the Cartesian product of the embedding of S1 in the plane with itself. This produces a geometric object called the Clifford torus, a surface in 4-space. In the field of topology, a torus is any topological space that is homeomorphic to a torus. The surface of a coffee cup and a doughnut are both topological tori with genus one. An example of a torus can be constructed by taking a rectangular strip of flexible material, for example, a rubber sheet, and joining the top edge to the bottom edge, and the left edge to the right edge, without any half-twists (compare Möbius strip).
rdf:langString 初等幾何学におけるトーラス(英: torus, 複数形: tori)、円環面、輪環面は、円周を回転して得られる回転面である。 いくつかの文脈では、二つの単位円周の直積集合 S1 × S1(に適当な構造を入れたもの)を「トーラス」と定義する。特に、位相幾何学における「トーラス」は、直積位相を備えた S1 × S1 に同相な図形の総称として用いられ、種数 1 の閉曲面(コンパクト)として特徴づけられる。このようなトーラスは R3 に位相的に埋め込めるが、各生成円をそれぞれ別の平面 R2 に埋め込んで、それら埋め込みを保つような直積空間としての「トーラス」をユークリッド空間に埋め込むことは R3 では不可能で、R4 で考える必要がある。これは と呼ばれる、四次元空間内の曲面を成す。 混同すべきでない関連の深い図形として、トーラスに囲まれた領域(三次元図形)すなわち「中身の詰まったトーラス」(solid torus) を、トーラス体、輪環体、円環体などと(対してもとのトーラスをトーラス面 (toroid) と)呼ぶこともある。また、中身の詰まったトーラスを単に「トーラス」(toroid) と呼ぶ場合があるので注意が必要である。また、同様に「円環」などと呼ばれる別の図形アニュラス(annulus、環帯)とも混同してはならない。
rdf:langString 기하학에서 원환면(圓環面) 또는 토러스(영어: torus)란 원을 삼차원 공간 상에서 원을 포함하는 평면 위의 직선을 축으로 회전하여 만든 회전면(surface of revolution)이다. 대부분의 교과서에서는 이 직선이 원과 만나지 않음을 가정한다. 원환면을 표면으로 하는 입체는 도넛의 모양을 닮게 되는데 이를 원환체(圓環體) 또는 토로이드(toroid)라고 한다. 위상수학에서는 원환면은 두 원의 곱집합 과 위상동형이다. 또한 종수(genus) 2의 2차원 콤팩트 다양체(compact 2-manifold)이기도 하다. 원환면은 삼차원 유클리드 공간에 매립(embed) 된다. 영어명 ‘토러스(torus)’는 ‘부풂’ 또는 ‘쿠션’을 의미하는 라틴어 단어 ‘토루스(tŏrus)’에서 유래하였다.
rdf:langString Een torus (meervoud: tori of torussen) is een driedimensionaal omwentelingslichaam, dat ontstaat door een cirkel te wentelen om een lijn die zich in het vlak van de cirkel bevindt. Als deze lijn de cirkel niet snijdt of raakt, is het resultaat een open torus welke ringvormig is, of vergelijkbaar met de binnenband van een fiets. Het oppervlak van een open torus is: 4 π2 r R De inhoud van een open torus is: 2 π2 r2 R De cartesische vergelijking wordt gegeven door: Een mogelijke parametrisatie van een torus rond de z-as is waar zowel u als v variëren van 0 tot 2π. Hierin is r de straal van de cirkel en R de afstand tussen het middelpunt van de cirkel en de verticale as.
rdf:langString In geometria il toro (dal latino torus, cuscino a forma di ciambella) è una superficie di rotazione ottenuta dalla rivoluzione di una circonferenza in uno spazio tridimensionale intorno a un asse ad essa complanare.
rdf:langString Torus – dwuwymiarowa powierzchnia obrotowa zanurzalna w przestrzeni trójwymiarowej, powstała przez obrót okręgu wokół prostej leżącej w płaszczyźnie tego okręgu i nieprzecinającej go. Często oznacza się go symbolem lub Wyobrażeniem torusa może być napompowana dętka rowerowa lub powierzchnia obwarzanka.
rdf:langString Toro ou toróide é um espaço topológico homeomorfo ao produto de dois círculos. Apresenta o formato aproximado de uma câmara de pneu. Em geometria, pode ser definido como o lugar geométrico tridimensional formado pela rotação de uma superfície circular plana de raio r, em torno de uma circunferência de raio R.
rdf:langString Torus är en matematisk kropp vars utseende i den vanliga tredimensionella varianten vanligen liknas vid en flottyrmunk. Den enklaste torusen inom matematiken är en tvådimensionell badringsformad yta, en delmängd av , som brukar betecknas T ². Liksom sfären är den kompakt, medan den inte är enkelt sammanhängande. Dess Eulerkarakteristik är 0, dess genus är 1. Exempel på parametrisering: x = (R + r cos(ψ)) cos(φ)y = (R + r cos(ψ)) sin(φ)z = r sin(ψ) (där 0 < r < R) Ett alternativt betraktelsesätt är att låta torusen vara en delmängd av . Parametriseringen blir då något enklare: x = cos(ψ)y = sin(ψ)z = cos(φ)t = sin(φ) Detta eftersom torusen nu kan skrivas som en kartesisk produkt mellan två cirklar, det vill säga T ² = S ¹ × S ¹. Denna version kallas även "den flata torusen", eftersom Gausskrökningen här är konstant 0. Generaliseringar kan ske på flera olika sätt: Dels genom att byta antalet dimensioner, vilket lättast beskrives lättast genom T n = S ¹ × S ¹ ... × S ¹ (denna torus är då en delmängd av R2n); dels genom att göra flera hål. Om ringens tvärsnitt inte är en cirkel utan en annan sluten kurva brukar man tala om en toroid. Torusen kan då ses som ett speciellt slag av toroid.
rdf:langString 在几何上,一个环面是一个手镯形状的旋转曲面,由一个圆绕一个和该圆共面的一个轴回转所生成。球面可以视为环面的特殊情况,也就是旋转轴是该圆的直径时。若转轴和圆不相交,圆面中间有一个洞,就像一个手镯、甜甜圈、呼啦圈,或者一个充了气的轮胎。另一个情况,也就是轴是圆的一根弦的时候,就产生一个挤扁了的球面,就像一个圆的座垫那样。英文Torus曾是拉丁文的这种形状的座垫。
rdf:langString Тор (тороид) — поверхность вращения, получаемая вращением образующей окружности вокруг оси, лежащей в плоскости этой окружности и не пересекающей её. Обобщенно, тор — топологическое пространство или гладкое многообразие, эквивалентное такой поверхности. Иногда не требуют, чтобы ось вращения не пересекала образующую окружность. В таком случае, если ось вращения пересекает образующую окружность (или касается её), то тор называют закрытым, иначе открытым. Понятие тора определяется и в многомерном случае. Тор является примером коммутативной алгебраической группы и примером группы Ли.
rdf:langString Тор — геометричне тіло, що утворюється обертанням кола навколо осі, котра лежить у одній площині з колом, але не перетинає його. Форма тора зовні нагадує бублик.
xsd:nonNegativeInteger 35413

data from the linked data cloud