Topological group

http://dbpedia.org/resource/Topological_group an entity of type: Thing

الزمرة الطوبولوجية في الرياضيات هي زمرة G مع طوبولوجيا الزمرة G بحيث أن العمليات الثنائية على الزمرة ومقلوب الزمرة تكون مستمرة. rdf:langString
En matemàtiques, un grup topològic és una terna tal que: * és un espai topològic. * és un grup (no necessàriament abelià). * La funció que porta a és contínua. * La funció que envia cada és contínua. És comú requerir que la topologia sobre sigui T0, ja que tot grup topològic T0 és també . Gairebé tots els objectes que investiga l'Anàlisi matemàtica són grups topològics (usualment amb estructura afegida). Cada grup pot ser convertit trivialment en un grup topològic considerant amb la topologia discreta, en aquest sentit, la teoria dels grups topològics subsumeix a la dels . rdf:langString
Topologická grupa je matematický objekt, který má jak strukturu grupy, tak i topologického prostoru, přičemž se požaduje, aby obě struktury byly vzájemně kompatibilní. Příkladem topologické grupy je množina jednotkových komplexních čísel (kružnice) s operací násobení, reálná čísla s operací sčítání, Lieovy grupy, anebo množina racionálních čísel spolu s operací sčítání. rdf:langString
In der Mathematik ist eine topologische Gruppe eine Gruppe, die eine mit der Gruppenstruktur „verträgliche“ Topologie hat. Die topologische Struktur erlaubt es zum Beispiel, Grenzwerte in dieser Gruppe zu betrachten, und von stetigen Homomorphismen zu sprechen. rdf:langString
En mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique. rdf:langString
En matemáticas, especialmente en topología, un grupo topológico (llamado también grupo continuo ​) es una terna tal que: * es un espacio topológico. * es un grupo (no siempre abeliano). * La función que aplica es continua. * La función que aplica es continua. Las últimas dos condiciones pueden ser sustituidas por la siguiente condición equivalente: la función que aplica es continua. rdf:langString
数学における位相群(いそうぐん、英: topological group)は、位相の定められた群であって、そのすべての群演算が与えられた位相に関して連続となるという意味において代数構造と位相構造が両立する。したがって位相群に関して、群としての代数的操作を行ったり、位相空間として連続写像について扱ったりすることができる。位相群のは、連続対称性を調べるのに利用でき、例えば物理学などにも多くの応用を持つ。 文献によっては、本項に言うところの位相群を連続群と呼び、単に「位相群」と言えば位相空間として T2(ハウスドルフの分離公理)を満たす連続群すなわちハウスドルフ位相群を意味するものがある。 rdf:langString
군론에서 위상군(位相群, 영어: topological group)은 위상이 주어진 군으로서 위상적 구조와 대수적 구조가 서로 어울리는 경우이다. 즉, 이는 군의 연산이 연속 함수임을 말한다. rdf:langString
In de wiskunde zijn de topologische groepen tegelijkertijd groepen en topologische ruimten zodanig dat de groepsstructuur en de topologische structuur compatibel zijn. Concreet betekent dit voor een groep dat de vermenigvuldiging en de inversie continu zijn. In deze definitie wordt de vermenigvuldiging opgevat als een afbeelding van het Cartesisch product , uitgerust met de producttopologie, naar zelf. Veel auteurs eisen dat als topologische ruimte een Hausdorff-ruimte is. De continuïteit van zowel vermenigvuldiging als inversie kan worden samengevat in de eis dat de afbeelding continu is. rdf:langString
Um grupo topológico é um grupo munido de uma topologia de modo que a multiplicação e a inversão sejam ambas contínuas. Alguns autores exigem que seja espaço topológico de Hausdorff, ou que seja uma variedade diferenciável. No entanto, a maioria dos textos contemporâneos adota a definição mais geral. rdf:langString
En topologisk grupp är inom matematiken är ett topologiskt rum utrustad med en gruppstruktur. Gruppstrukturen och den topologiska strukturen krävs vara kompatibla genom att gruppoperationerna är kontinuerliga. rdf:langString
Grupa topologiczna – grupa na której określona jest jednocześnie struktura przestrzeni topologicznej w taki sposób, że zarówno działanie grupowe, jak i operacja brania elementu odwrotnego są funkcjami ciągłymi. rdf:langString
Топологі́чна гру́па — група, яка одночасно є топологічним простором, при цьому множення елементів групи і обертання елемента є неперервними. rdf:langString
在數學中,拓撲群是群 G 和與之一起的 G 上的拓撲,使得這個群的二元運算和這個群的取逆函數是連續的。拓撲群允許依據連續群作用來研究連續對稱的概念。 rdf:langString
Dalam matematika, grup topologis adalah grup G bersama dengan topologi pada sehingga kedua operasi biner grup dan elemen grup pemetaan fungsi ke balikkannya masing-masing adalah fungsi yang berkaitan dengan topologi. Grup topologis adalah objek matematika dengan struktur aljabar dan struktur topologi. Jadi, salah satunya dapat melakukan operasi aljabar, karena struktur grupnya, dan salah satunya dapat berbicara tentang fungsi kontinu, karena topologinya. rdf:langString
In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other. Topological groups have been studied extensively in the period of 1925 to 1940. Haar and Weil (respectively in 1933 and 1940) showed that the integrals and Fourier series are special cases of a very wide class of topological groups. rdf:langString
In algebra astratta, un gruppo topologico è un gruppo dotato di una struttura topologica, rispetto alla quale le operazioni di gruppo sono funzioni continue. Un gruppo topologico presenta quindi due diverse strutture matematiche, una di tipo topologico e una di tipo algebrico che interagiscono tra loro. rdf:langString
Топологи́ческая гру́ппа (непрерывная группа) — это группа, которая одновременно является топологическим пространством, причём умножение элементов группы G × G → G и операция взятия обратного элемента G → G являются непрерывными в используемой топологии. Из приведённого определения непосредственно следует, что операции левого и правого сдвига, а также операция сопряжения, традиционно обозначаемые буквами l, r, a и определяемые равенствами lg(h) = gh,rg(h) = hg,ag(h) = ghg−1, представляют собой гомеоморфизмы пространства G на себя. rdf:langString
rdf:langString زمرة طوبولوجية
rdf:langString Grup topològic
rdf:langString Topologická grupa
rdf:langString Topologische Gruppe
rdf:langString Grupo topológico
rdf:langString Grup topologi
rdf:langString Groupe topologique
rdf:langString Gruppo topologico
rdf:langString 位相群
rdf:langString 위상군
rdf:langString Grupa topologiczna
rdf:langString Topologische groep
rdf:langString Топологическая группа
rdf:langString Topological group
rdf:langString Grupo topológico
rdf:langString Topologisk grupp
rdf:langString 拓扑群
rdf:langString Топологічна група
xsd:integer 42315
xsd:integer 1123976380
rdf:langString الزمرة الطوبولوجية في الرياضيات هي زمرة G مع طوبولوجيا الزمرة G بحيث أن العمليات الثنائية على الزمرة ومقلوب الزمرة تكون مستمرة.
rdf:langString En matemàtiques, un grup topològic és una terna tal que: * és un espai topològic. * és un grup (no necessàriament abelià). * La funció que porta a és contínua. * La funció que envia cada és contínua. És comú requerir que la topologia sobre sigui T0, ja que tot grup topològic T0 és també . Gairebé tots els objectes que investiga l'Anàlisi matemàtica són grups topològics (usualment amb estructura afegida). Cada grup pot ser convertit trivialment en un grup topològic considerant amb la topologia discreta, en aquest sentit, la teoria dels grups topològics subsumeix a la dels .
rdf:langString Topologická grupa je matematický objekt, který má jak strukturu grupy, tak i topologického prostoru, přičemž se požaduje, aby obě struktury byly vzájemně kompatibilní. Příkladem topologické grupy je množina jednotkových komplexních čísel (kružnice) s operací násobení, reálná čísla s operací sčítání, Lieovy grupy, anebo množina racionálních čísel spolu s operací sčítání.
rdf:langString In der Mathematik ist eine topologische Gruppe eine Gruppe, die eine mit der Gruppenstruktur „verträgliche“ Topologie hat. Die topologische Struktur erlaubt es zum Beispiel, Grenzwerte in dieser Gruppe zu betrachten, und von stetigen Homomorphismen zu sprechen.
rdf:langString En mathématiques, un groupe topologique est un groupe muni d'une topologie compatible avec la structure de groupe, c'est-à-dire telle que la loi de composition interne du groupe et le passage à l'inverse sont deux applications continues. L'étude des groupes topologiques mêle donc des raisonnements d'algèbre et de topologie. La structure de groupe topologique est une notion essentielle en topologie algébrique.
rdf:langString En matemáticas, especialmente en topología, un grupo topológico (llamado también grupo continuo ​) es una terna tal que: * es un espacio topológico. * es un grupo (no siempre abeliano). * La función que aplica es continua. * La función que aplica es continua. Las últimas dos condiciones pueden ser sustituidas por la siguiente condición equivalente: la función que aplica es continua.
rdf:langString Dalam matematika, grup topologis adalah grup G bersama dengan topologi pada sehingga kedua operasi biner grup dan elemen grup pemetaan fungsi ke balikkannya masing-masing adalah fungsi yang berkaitan dengan topologi. Grup topologis adalah objek matematika dengan struktur aljabar dan struktur topologi. Jadi, salah satunya dapat melakukan operasi aljabar, karena struktur grupnya, dan salah satunya dapat berbicara tentang fungsi kontinu, karena topologinya. Grup topologis, bersama dengan , digunakan untuk mempelajari simetri kontinu, yang memiliki banyak penerapan, misalnya . Dalam analisis fungsional, setiap ruang vektor topologis adalah grup topologis aditif dengan sifat tambahan bahwa perkalian skalar adalah kontinu; akibatnya, banyak hasil dari teori grup topologis dapat diterapkan pada analisis fungsional.
rdf:langString In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other. Topological groups have been studied extensively in the period of 1925 to 1940. Haar and Weil (respectively in 1933 and 1940) showed that the integrals and Fourier series are special cases of a very wide class of topological groups. Topological groups, along with continuous group actions, are used to study continuous symmetries, which have many applications, for example, in physics. In functional analysis, every topological vector space is an additive topological group with the additional property that scalar multiplication is continuous; consequently, many results from the theory of topological groups can be applied to functional analysis.
rdf:langString 数学における位相群(いそうぐん、英: topological group)は、位相の定められた群であって、そのすべての群演算が与えられた位相に関して連続となるという意味において代数構造と位相構造が両立する。したがって位相群に関して、群としての代数的操作を行ったり、位相空間として連続写像について扱ったりすることができる。位相群のは、連続対称性を調べるのに利用でき、例えば物理学などにも多くの応用を持つ。 文献によっては、本項に言うところの位相群を連続群と呼び、単に「位相群」と言えば位相空間として T2(ハウスドルフの分離公理)を満たす連続群すなわちハウスドルフ位相群を意味するものがある。
rdf:langString In algebra astratta, un gruppo topologico è un gruppo dotato di una struttura topologica, rispetto alla quale le operazioni di gruppo sono funzioni continue. Un gruppo topologico presenta quindi due diverse strutture matematiche, una di tipo topologico e una di tipo algebrico che interagiscono tra loro. Tra i più importanti gruppi topologici va annoverato l'insieme dei numeri reali dotato della usuale topologia derivante dalla distanza euclidea e dell'operazione di addizione. È comunque sempre possibile dotare un qualunque gruppo della topologia discreta, rendendolo così un gruppo topologico (gruppo topologico discreto).
rdf:langString 군론에서 위상군(位相群, 영어: topological group)은 위상이 주어진 군으로서 위상적 구조와 대수적 구조가 서로 어울리는 경우이다. 즉, 이는 군의 연산이 연속 함수임을 말한다.
rdf:langString In de wiskunde zijn de topologische groepen tegelijkertijd groepen en topologische ruimten zodanig dat de groepsstructuur en de topologische structuur compatibel zijn. Concreet betekent dit voor een groep dat de vermenigvuldiging en de inversie continu zijn. In deze definitie wordt de vermenigvuldiging opgevat als een afbeelding van het Cartesisch product , uitgerust met de producttopologie, naar zelf. Veel auteurs eisen dat als topologische ruimte een Hausdorff-ruimte is. De continuïteit van zowel vermenigvuldiging als inversie kan worden samengevat in de eis dat de afbeelding continu is.
rdf:langString Um grupo topológico é um grupo munido de uma topologia de modo que a multiplicação e a inversão sejam ambas contínuas. Alguns autores exigem que seja espaço topológico de Hausdorff, ou que seja uma variedade diferenciável. No entanto, a maioria dos textos contemporâneos adota a definição mais geral.
rdf:langString En topologisk grupp är inom matematiken är ett topologiskt rum utrustad med en gruppstruktur. Gruppstrukturen och den topologiska strukturen krävs vara kompatibla genom att gruppoperationerna är kontinuerliga.
rdf:langString Grupa topologiczna – grupa na której określona jest jednocześnie struktura przestrzeni topologicznej w taki sposób, że zarówno działanie grupowe, jak i operacja brania elementu odwrotnego są funkcjami ciągłymi.
rdf:langString Топологи́ческая гру́ппа (непрерывная группа) — это группа, которая одновременно является топологическим пространством, причём умножение элементов группы G × G → G и операция взятия обратного элемента G → G являются непрерывными в используемой топологии. Из приведённого определения непосредственно следует, что операции левого и правого сдвига, а также операция сопряжения, традиционно обозначаемые буквами l, r, a и определяемые равенствами lg(h) = gh,rg(h) = hg,ag(h) = ghg−1, представляют собой гомеоморфизмы пространства G на себя. Изоморфизм топологической группы G на топологическую группу H — это биективное отображение группы G на H, которое одновременно является изоморфизмом структуры группы в G на структуру группы в H и гомеоморфизмом G на H. Понятие топологической группы обобщает понятие группы Ли; последнее требует, чтобы операции умножения элементов и взятия обратного элемента были не только непрерывными, но аналитическими или голоморфными (при этом на группе вводится не только топология, но и структура аналитического или комплексного многообразия).
rdf:langString Топологі́чна гру́па — група, яка одночасно є топологічним простором, при цьому множення елементів групи і обертання елемента є неперервними.
rdf:langString 在數學中,拓撲群是群 G 和與之一起的 G 上的拓撲,使得這個群的二元運算和這個群的取逆函數是連續的。拓撲群允許依據連續群作用來研究連續對稱的概念。
xsd:nonNegativeInteger 51509

data from the linked data cloud