Thin group (algebraic group theory)

http://dbpedia.org/resource/Thin_group_(algebraic_group_theory) an entity of type: Abstraction100002137

In algebraic group theory, a thin group is a discrete Zariski-dense subgroup of G(R) that has infinite covolume, where G is a semisimple algebraic group over the reals. This is in contrast to a lattice, which is a discrete subgroup of finite covolume. The theory of "group expansion" (expander graph properties of related Cayley graphs) for particular thin groups has been applied to arithmetic properties of Apollonian circles and in Zaremba's conjecture. rdf:langString
Inom , en del av matematiken, är en tunn grupp en diskret Zariskität delgrupp av G(R) som har oändlig kovolym, där G är en över reella talen. Teorin av "gruppexpansion" för vissa tunna grupper har använts till aritmetiska egenskaper av och i . rdf:langString
rdf:langString Thin group (algebraic group theory)
rdf:langString Tunn grupp (algebraisk gruppteori)
xsd:integer 42832340
xsd:integer 1105555848
rdf:langString In algebraic group theory, a thin group is a discrete Zariski-dense subgroup of G(R) that has infinite covolume, where G is a semisimple algebraic group over the reals. This is in contrast to a lattice, which is a discrete subgroup of finite covolume. The theory of "group expansion" (expander graph properties of related Cayley graphs) for particular thin groups has been applied to arithmetic properties of Apollonian circles and in Zaremba's conjecture.
rdf:langString Inom , en del av matematiken, är en tunn grupp en diskret Zariskität delgrupp av G(R) som har oändlig kovolym, där G är en över reella talen. Teorin av "gruppexpansion" för vissa tunna grupper har använts till aritmetiska egenskaper av och i .
xsd:nonNegativeInteger 1181

data from the linked data cloud