Tautological one-form
http://dbpedia.org/resource/Tautological_one-form an entity of type: Abstraction100002137
En géométrie différentielle, la forme de Liouville est une 1-forme différentielle naturelle sur le fibré cotangent d'une variété différentielle. Sa dérivée extérieure est une forme symplectique. Elle joue un rôle central en mécanique classique. L'étude de la géométrie du fibré cotangent revêt une importance significative en géométrie symplectique en raison, notamment, du théorème de Weinstein.
rdf:langString
미분기하학에서, 리우빌 미분 형식(Liouville微分形式, 영어: Liouville differential form)은 매끄러운 다양체의 공변접다발(의 외대수) 위에 정의되는 표준적인 미분 형식이다. 그 외미분은 심플렉틱 다양체(또는 멀티심플렉틱 다양체)의 구조를 정의한다.
rdf:langString
Niech (X, ω) będzie rozmaitością symplektyczną. 1-formę β spełniającą: nazywamy formą Liouville’a na X. Dla każdej pary ω i β istnieje jedno pole wektorowe η na X, takie że: gdzie oznacza zwężenie ω przez η.
rdf:langString
在数学中,重言 1-形式(Tautological one-form)是流形 Q 的余切丛 上一个特殊的 1-形式。这个形式的外导数定义了一个辛形式给出了 的辛流形。重言 1-形式在哈密顿力学与拉格朗日力学的形式化中起着重要的作用。重言 1-形式有时也称为刘维尔 1-形式,典范 1-形式,或者辛势能。一个类似的对象是切丛上的典范向量场。 在典范坐标中,重言 1-形式由下式给出: 在差一个全微分(恰当形式)的意义下,相空间中的任何“保持”典范 1-形式结构的坐标系,可以称之为典范坐标;不同典范坐标之间的变换称为典范变换。 典范辛形式由 给出。
rdf:langString
En matemàtiques, la u-forma canònica és una 1-forma especial definida sobre el fibrat cotangent T*Q d'una varietat Q. També s'anomena u-forma tautològica, u-forma de Liouville, u-forma de Poincaré o potencial simplèctic. La derivada exterior d'aquesta forma defineix una forma simplèctica, amb la qual cosa T*Q incorpora l'estructura d'una varietat simplèctica. La u-forma canònica juga un rol important en la relació entre el formalisme de la mecànica hamiltoniana i la mecànica lagrangiana. Un objecte similar és l'espai vectorial canònic sobre el fibrat tangent. En geometria algebraica i , el terme "canònic" pot crear confusió amb la , i s'acostuma a emprar el terme "tautològic".
rdf:langString
In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle of a manifold In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus providing a bridge between Lagrangian mechanics with Hamiltonian mechanics (on the manifold ). To define the tautological one-form, select a coordinate chart on and a canonical coordinate system on Pick an arbitrary point By definition of cotangent bundle, where and The tautological one-form is given by with and being the coordinate representation of
rdf:langString
rdf:langString
U-forma canònica
rdf:langString
Forme de Liouville
rdf:langString
리우빌 미분 형식
rdf:langString
Forma Liouville’a
rdf:langString
Tautological one-form
rdf:langString
重言1形式
xsd:integer
1855974
xsd:integer
1111645119
rdf:langString
En matemàtiques, la u-forma canònica és una 1-forma especial definida sobre el fibrat cotangent T*Q d'una varietat Q. També s'anomena u-forma tautològica, u-forma de Liouville, u-forma de Poincaré o potencial simplèctic. La derivada exterior d'aquesta forma defineix una forma simplèctica, amb la qual cosa T*Q incorpora l'estructura d'una varietat simplèctica. La u-forma canònica juga un rol important en la relació entre el formalisme de la mecànica hamiltoniana i la mecànica lagrangiana. Un objecte similar és l'espai vectorial canònic sobre el fibrat tangent. En geometria algebraica i , el terme "canònic" pot crear confusió amb la , i s'acostuma a emprar el terme "tautològic". En coordenades canòniques, la u-forma canònica ve donada per Equivalentment, unes coordenades qualssevol sobre l'espai de fases que preservi aquesta estructura per a la u-forma canònica, fins a un diferencial total, poden anomenar-se coordenades canòniques; les transformacions entre sistemes de coordenades canòniques diferents s'anomenen transformacions canòniques. La forma simplèctica canònica, també coneguda com a dos-forma de Poincaré, ve donada per
rdf:langString
En géométrie différentielle, la forme de Liouville est une 1-forme différentielle naturelle sur le fibré cotangent d'une variété différentielle. Sa dérivée extérieure est une forme symplectique. Elle joue un rôle central en mécanique classique. L'étude de la géométrie du fibré cotangent revêt une importance significative en géométrie symplectique en raison, notamment, du théorème de Weinstein.
rdf:langString
In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle of a manifold In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus providing a bridge between Lagrangian mechanics with Hamiltonian mechanics (on the manifold ). The exterior derivative of this form defines a symplectic form giving the structure of a symplectic manifold. The tautological one-form plays an important role in relating the formalism of Hamiltonian mechanics and Lagrangian mechanics. The tautological one-form is sometimes also called the Liouville one-form, the Poincaré one-form, the canonical one-form, or the symplectic potential. A similar object is the canonical vector field on the tangent bundle. To define the tautological one-form, select a coordinate chart on and a canonical coordinate system on Pick an arbitrary point By definition of cotangent bundle, where and The tautological one-form is given by with and being the coordinate representation of Any coordinates on that preserve this definition, up to a total differential (exact form), may be called canonical coordinates; transformations between different canonical coordinate systems are known as canonical transformations. The canonical symplectic form, also known as the Poincaré two-form, is given by The extension of this concept to general fibre bundles is known as the solder form. By convention, one uses the phrase "canonical form" whenever the form has a unique, canonical definition, and one uses the term "solder form", whenever an arbitrary choice has to be made. In algebraic geometry and complex geometry the term "canonical" is discouraged, due to confusion with the canonical class, and the term "tautological" is preferred, as in tautological bundle.
rdf:langString
미분기하학에서, 리우빌 미분 형식(Liouville微分形式, 영어: Liouville differential form)은 매끄러운 다양체의 공변접다발(의 외대수) 위에 정의되는 표준적인 미분 형식이다. 그 외미분은 심플렉틱 다양체(또는 멀티심플렉틱 다양체)의 구조를 정의한다.
rdf:langString
Niech (X, ω) będzie rozmaitością symplektyczną. 1-formę β spełniającą: nazywamy formą Liouville’a na X. Dla każdej pary ω i β istnieje jedno pole wektorowe η na X, takie że: gdzie oznacza zwężenie ω przez η.
rdf:langString
在数学中,重言 1-形式(Tautological one-form)是流形 Q 的余切丛 上一个特殊的 1-形式。这个形式的外导数定义了一个辛形式给出了 的辛流形。重言 1-形式在哈密顿力学与拉格朗日力学的形式化中起着重要的作用。重言 1-形式有时也称为刘维尔 1-形式,典范 1-形式,或者辛势能。一个类似的对象是切丛上的典范向量场。 在典范坐标中,重言 1-形式由下式给出: 在差一个全微分(恰当形式)的意义下,相空间中的任何“保持”典范 1-形式结构的坐标系,可以称之为典范坐标;不同典范坐标之间的变换称为典范变换。 典范辛形式由 给出。
xsd:nonNegativeInteger
13514