Symplectic vector field
http://dbpedia.org/resource/Symplectic_vector_field
在数学与物理学中,辛向量场(symplectic vector field)是流保持辛形式的向量场。即如果 是一个辛形式,则如果向量场 的流保持辛结构 ,则称为一个辛向量场。换句话说,李导数为零: 或者,一个向量场是辛的如果它与辛形式内乘是闭的(内乘给出从向量场到 1-形式的一个映射,因辛形式的非退化性这是一个同构)。两个定义的等价性从辛形式的闭性与李导数用外导数表示的嘉当公式推出。 如果一个向量场与辛形式的内乘是恰当的(特别地是闭的),称为哈密顿向量场。如果第一德拉姆上同调群 是平凡的,故所有闭形式是恰当的,所以辛相邻场是哈密顿的。这就是说:“一个辛向量场是哈密顿的之阻碍属于 。”特别地,单连通空间上的辛向量场是哈密顿的。 两个辛向量场的李括号是哈密顿的,从而辛向量集合与哈密顿向量场集合各自形成一个李代数。 本條目含有来自PlanetMath《Symplectic vector field》的內容,版权遵守知识共享协议:署名-相同方式共享协议。
rdf:langString
In physics and mathematics, a symplectic vector field is one whose flow preserves a symplectic form. That is, if is a symplectic manifold with smooth manifold and symplectic form , then a vector field in the Lie algebra is symplectic if its flow preserves the symplectic structure. In other words, the Lie derivative of the vector field must vanish: . The Lie bracket of two symplectic vector fields is Hamiltonian, and thus the collection of symplectic vector fields and the collection of Hamiltonian vector fields both form Lie algebras.
rdf:langString
rdf:langString
Symplectic vector field
rdf:langString
辛向量场
xsd:integer
1818385
xsd:integer
840430527
xsd:integer
3705
rdf:langString
Symplectic vector field
rdf:langString
In physics and mathematics, a symplectic vector field is one whose flow preserves a symplectic form. That is, if is a symplectic manifold with smooth manifold and symplectic form , then a vector field in the Lie algebra is symplectic if its flow preserves the symplectic structure. In other words, the Lie derivative of the vector field must vanish: . An alternative definition is that a vector field is symplectic if its interior product with the symplectic form is closed. (The interior product gives a map from vector fields to 1-forms, which is an isomorphism due to the nondegeneracy of a symplectic 2-form.) The equivalence of the definitions follows from the closedness of the symplectic form and Cartan's magic formula for the Lie derivative in terms of the exterior derivative. If the interior product of a vector field with the symplectic form is an exact form (and in particular, a closed form), then it is called a Hamiltonian vector field. If the first De Rham cohomology group of the manifold is trivial, all closed forms are exact, so all symplectic vector fields are Hamiltonian. That is, the obstruction to a symplectic vector field being Hamiltonian lives in . In particular, symplectic vector fields on simply connected manifolds are Hamiltonian. The Lie bracket of two symplectic vector fields is Hamiltonian, and thus the collection of symplectic vector fields and the collection of Hamiltonian vector fields both form Lie algebras.
rdf:langString
在数学与物理学中,辛向量场(symplectic vector field)是流保持辛形式的向量场。即如果 是一个辛形式,则如果向量场 的流保持辛结构 ,则称为一个辛向量场。换句话说,李导数为零: 或者,一个向量场是辛的如果它与辛形式内乘是闭的(内乘给出从向量场到 1-形式的一个映射,因辛形式的非退化性这是一个同构)。两个定义的等价性从辛形式的闭性与李导数用外导数表示的嘉当公式推出。 如果一个向量场与辛形式的内乘是恰当的(特别地是闭的),称为哈密顿向量场。如果第一德拉姆上同调群 是平凡的,故所有闭形式是恰当的,所以辛相邻场是哈密顿的。这就是说:“一个辛向量场是哈密顿的之阻碍属于 。”特别地,单连通空间上的辛向量场是哈密顿的。 两个辛向量场的李括号是哈密顿的,从而辛向量集合与哈密顿向量场集合各自形成一个李代数。 本條目含有来自PlanetMath《Symplectic vector field》的內容,版权遵守知识共享协议:署名-相同方式共享协议。
xsd:nonNegativeInteger
2254