Symplectic manifold

http://dbpedia.org/resource/Symplectic_manifold an entity of type: Thing

Symplektická varieta je pojem z matematiky, přesněji z diferenciální geometrie. Formalizuje v rámci matematiky fyzikální pojem fázového prostoru. rdf:langString
Symplektische Mannigfaltigkeiten sind die zentralen Objekte der symplektischen Geometrie, eines Teilgebiets der Differentialgeometrie. Die symplektischen Mannigfaltigkeiten haben einen sehr starken Bezug zur theoretischen Physik. rdf:langString
In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system. rdf:langString
미분기하학에서 심플렉틱 다양체(symplectic多樣體, symplectic manifold) 또는 사교다양체(斜交多樣體)는 닫힌 비퇴화 2차 미분 형식을 갖춘 매끄러운 다양체다. 여접다발의 개념을 일반화한 것으로 생각할 수 있으며, 항상 짝수 차원을 가진다. 심플렉틱 다양체의 성질을 연구하는 수학 분야를 심플렉틱 기하학(symplectic幾何學, 영어: symplectic geometry), 사교기하학(斜交幾何學), 심플렉틱 위상수학(symplectic位相數學, 영어: symplectic topology) 또는 사교위상수학(斜交位相數學)이라고 한다. rdf:langString
In de differentiaalmeetkunde en de differentiaaltopologie, deelgebieden van de wiskunde, is een symplectische variëteit een gladde variëteit, M, die is uitgerust met een differentiële , ω, die men de noemt. De studie van symplectische variëteiten noemt men symplectische meetkunde of . Symplectische variëteiten ontstaan van nature in abstracte formuleringen van de klassieke mechanica en de als de van variëteiten, bijvoorbeeld in de Hamiltonformalisme van de klassieke mechanica, die een van de belangrijkste motivaties voor dit studiegebied biedt: De verzameling van alle mogelijke configuraties van een systeem wordt gemodelleerd als een variëteit, en deze variëteit haar coraakbundel beschrijft de faseruimte van het systeem. rdf:langString
数学におけるシンプレクティック多様体(シンプレクティックたようたい、symplectic manifold)は、シンプレクティック形式と呼ばれる非退化な閉形式である 2-形式を持つ滑らかな多様体である。シンプレクティック多様体の研究分野はシンプレクティック幾何学やシンプレクティックトポロジーと呼ばれる。シンプレクティック多様体は、古典力学の抽象的定式化であるハミルトン力学などにおいて多様体の余接バンドルとして自然に表れるもので、この分野に対して大きな動機付けを与えた。実際、系の取り得るすべての配位が成す集合を多様体としてモデル化すると、この多様体は系の相空間を記述する。 シンプレクティック多様体上の微分可能な実数値関数 H は(energy function)を与えることができ、これをハミルトニアンと呼ぶ。どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場の積分曲線はハミルトン方程式の解曲線になる。ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。 rdf:langString
Симплектичний многовид — це многовид із заданою на ньому симплектичною формою, тобто замкнутою невиродженою диференціальною 2-формою. Симплектичний многовид дозволяє природним геометричним чином ввести механіку Гамільтона і дає наочне тлумачення багатьом її властивостям. rdf:langString
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой. Важнейшим примером симплектического многообразия является кокасательное расслоение . Симплектическая структура позволяет естественным геометрическим образом ввести гамильтонову механику и даёт наглядное толкование многим её свойствам: если — конфигурационное пространство механической системы, то — соответствующее ему фазовое пространство. rdf:langString
数学上,一个辛流形是一个装备了一个闭、非退化2-形式ω的光滑流形,ω称为辛形式。辛流形的研究称为辛拓扑。辛流形作为经典力学和分析力学的抽象表述中的流形的余切丛自然的出现,例如在经典力学的哈密顿表述中,该领域的一个主要原因之一:一个系统的所有组态的空间可以用一个流形建模,而该流形的余切丛描述了该系统的相空间。 一个辛流形上的任何实值可微函数H可以用作一个能量函数或者叫哈密顿量。和任何一个哈密顿量相关有一个哈密顿向量场;该哈密顿向量场的是哈密顿-雅可比方程的解。哈密顿向量场定义了辛流形上的一个流场,称为哈密顿流场或者叫辛同胚。根据刘维尔定理,哈密顿流保持相空间的体积形式不变。 rdf:langString
En matemàtiques, i més específicament en geometria diferencial, una varietat simplèctica és una varietat diferenciable M dotada d'una 2-forma diferencial tancada i no-degenerada ω, anomenada forma simplèctica.L'estudi de les varietats simplèctiques s'anomena geometria simplèctica o topologia simplèctica. Les varietats simplèctiques sorgeixen naturalment en les formulacions abstractes de la mecànica clàssica, i més específicament de la mecànica hamiltoniana, on l'espai de les fases d'un sistema mecànic és el fibrat cotangent de l'espai de les configuracions; aquest espai de les fases està dotat d'una estructura simplèctica natural. rdf:langString
En mathématiques, une variété symplectique est une variété différentielle munie d'une forme différentielle de degré 2 fermée et non dégénérée, appelée forme symplectique. L'étude des variétés symplectiques relève de la géométrie symplectique. Les variétés symplectiques apparaissent dans les reformulations analytiques abstraites de la mécanique classique utilisant la notion de fibré cotangent d'une variété, notamment dans la reformulation hamiltonnienne, où les configurations d'un système forment une variété dont le fibré cotangent décrit l'espace des phases du système. rdf:langString
In matematica una varietà simplettica è una varietà differenziabile liscia munita di una 2-forma chiusa non degenere , definita forma simplettica. Lo studio delle varietà simplettiche è denominato geometria simplettica. Esso deriva dalle formulazioni astratte della meccanica classica e della meccanica analitica, come il fibrato cotangente di una varietà, ad esempio nella riformulazione hamiltoniana della meccanica classica. rdf:langString
rdf:langString Varietat simplèctica
rdf:langString Symplektická varieta
rdf:langString Symplektische Mannigfaltigkeit
rdf:langString Varietà simplettica
rdf:langString Variété symplectique
rdf:langString 심플렉틱 다양체
rdf:langString シンプレクティック多様体
rdf:langString Symplectische variëteit
rdf:langString Symplectic manifold
rdf:langString Симплектическое многообразие
rdf:langString 辛流形
rdf:langString Симплектичний многовид
xsd:integer 28356
xsd:integer 1114486122
rdf:langString Ülo Lumiste
rdf:langString Ü.
rdf:langString s/s091860
rdf:langString Lumist
rdf:langString Symplectic Structure
rdf:langString En matemàtiques, i més específicament en geometria diferencial, una varietat simplèctica és una varietat diferenciable M dotada d'una 2-forma diferencial tancada i no-degenerada ω, anomenada forma simplèctica.L'estudi de les varietats simplèctiques s'anomena geometria simplèctica o topologia simplèctica. Les varietats simplèctiques sorgeixen naturalment en les formulacions abstractes de la mecànica clàssica, i més específicament de la mecànica hamiltoniana, on l'espai de les fases d'un sistema mecànic és el fibrat cotangent de l'espai de les configuracions; aquest espai de les fases està dotat d'una estructura simplèctica natural. De la mateixa manera que en la mecànica hamiltoniana la funció dona lloc a les equacions del moviment, les , en una varietat simplèctica arbitrària (M,ω) qualsevol funció H: M → R dona lloc a un camp vectorial XH dit camp vectorial hamiltonià. Al seu torn, aquest camp vectorial defineix una equació diferencial de primer ordre en M, dita . Les seves solucions són les de XH, i constitueixen un flux en M dit flux hamiltonià, que està format per simplectomorfismes. D'acord amb el , el flux hamiltonià preserva la forma de volum de l'espai de les fases.
rdf:langString Symplektická varieta je pojem z matematiky, přesněji z diferenciální geometrie. Formalizuje v rámci matematiky fyzikální pojem fázového prostoru.
rdf:langString Symplektische Mannigfaltigkeiten sind die zentralen Objekte der symplektischen Geometrie, eines Teilgebiets der Differentialgeometrie. Die symplektischen Mannigfaltigkeiten haben einen sehr starken Bezug zur theoretischen Physik.
rdf:langString En mathématiques, une variété symplectique est une variété différentielle munie d'une forme différentielle de degré 2 fermée et non dégénérée, appelée forme symplectique. L'étude des variétés symplectiques relève de la géométrie symplectique. Les variétés symplectiques apparaissent dans les reformulations analytiques abstraites de la mécanique classique utilisant la notion de fibré cotangent d'une variété, notamment dans la reformulation hamiltonnienne, où les configurations d'un système forment une variété dont le fibré cotangent décrit l'espace des phases du système. Toute fonction à valeurs réelles sur une variété symplectique définit un champ de vecteurs hamiltonien, dont les courbes intégrales sont solutions des équations de Hamilton-Jacobi. Le champ de vecteurs hamiltonien décrit un difféomorphisme hamiltonien sur la variété symplectique. Par le théorème de Liouville, ce flot hamiltonien préserve la forme volume.
rdf:langString In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.
rdf:langString In matematica una varietà simplettica è una varietà differenziabile liscia munita di una 2-forma chiusa non degenere , definita forma simplettica. Lo studio delle varietà simplettiche è denominato geometria simplettica. Esso deriva dalle formulazioni astratte della meccanica classica e della meccanica analitica, come il fibrato cotangente di una varietà, ad esempio nella riformulazione hamiltoniana della meccanica classica. Una qualsiasi funzione differenziabile, H, a valori reali che lavora su una varietà simplettica fa da hamiltoniana o funzione energia. Ad ogni hamiltoniana è associato un campo vettoriale hamiltoniano; i moti naturali del sistema hamiltoniano sono soluzioni delle equazioni di Hamilton-Jacobi. Tramite il campo hamiltoniano è possibile definire un flusso sulla varietà simplettica, chiamato simplettomorfismo o flusso hamiltoniano. Per il teorema di Liouville, il flusso hamiltoniano preserva la forma volume sullo spazio delle fasi.
rdf:langString 미분기하학에서 심플렉틱 다양체(symplectic多樣體, symplectic manifold) 또는 사교다양체(斜交多樣體)는 닫힌 비퇴화 2차 미분 형식을 갖춘 매끄러운 다양체다. 여접다발의 개념을 일반화한 것으로 생각할 수 있으며, 항상 짝수 차원을 가진다. 심플렉틱 다양체의 성질을 연구하는 수학 분야를 심플렉틱 기하학(symplectic幾何學, 영어: symplectic geometry), 사교기하학(斜交幾何學), 심플렉틱 위상수학(symplectic位相數學, 영어: symplectic topology) 또는 사교위상수학(斜交位相數學)이라고 한다.
rdf:langString In de differentiaalmeetkunde en de differentiaaltopologie, deelgebieden van de wiskunde, is een symplectische variëteit een gladde variëteit, M, die is uitgerust met een differentiële , ω, die men de noemt. De studie van symplectische variëteiten noemt men symplectische meetkunde of . Symplectische variëteiten ontstaan van nature in abstracte formuleringen van de klassieke mechanica en de als de van variëteiten, bijvoorbeeld in de Hamiltonformalisme van de klassieke mechanica, die een van de belangrijkste motivaties voor dit studiegebied biedt: De verzameling van alle mogelijke configuraties van een systeem wordt gemodelleerd als een variëteit, en deze variëteit haar coraakbundel beschrijft de faseruimte van het systeem.
rdf:langString 数学におけるシンプレクティック多様体(シンプレクティックたようたい、symplectic manifold)は、シンプレクティック形式と呼ばれる非退化な閉形式である 2-形式を持つ滑らかな多様体である。シンプレクティック多様体の研究分野はシンプレクティック幾何学やシンプレクティックトポロジーと呼ばれる。シンプレクティック多様体は、古典力学の抽象的定式化であるハミルトン力学などにおいて多様体の余接バンドルとして自然に表れるもので、この分野に対して大きな動機付けを与えた。実際、系の取り得るすべての配位が成す集合を多様体としてモデル化すると、この多様体は系の相空間を記述する。 シンプレクティック多様体上の微分可能な実数値関数 H は(energy function)を与えることができ、これをハミルトニアンと呼ぶ。どのようなハミルトニアンに対してもハミルトンベクトル場が対応付けられる。ハミルトンベクトル場の積分曲線はハミルトン方程式の解曲線になる。ハミルトンベクトル場は、シンプレクティック多様体上のフロー(ハミルトンフロー、あるいは、シンプレクティック同相写像と呼ばれる)を定め、リウヴィルの定理によれば、ハミルトンフローは相空間上の体積要素を保存する。
rdf:langString Симплектичний многовид — це многовид із заданою на ньому симплектичною формою, тобто замкнутою невиродженою диференціальною 2-формою. Симплектичний многовид дозволяє природним геометричним чином ввести механіку Гамільтона і дає наочне тлумачення багатьом її властивостям.
rdf:langString Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой. Важнейшим примером симплектического многообразия является кокасательное расслоение . Симплектическая структура позволяет естественным геометрическим образом ввести гамильтонову механику и даёт наглядное толкование многим её свойствам: если — конфигурационное пространство механической системы, то — соответствующее ему фазовое пространство.
rdf:langString 数学上,一个辛流形是一个装备了一个闭、非退化2-形式ω的光滑流形,ω称为辛形式。辛流形的研究称为辛拓扑。辛流形作为经典力学和分析力学的抽象表述中的流形的余切丛自然的出现,例如在经典力学的哈密顿表述中,该领域的一个主要原因之一:一个系统的所有组态的空间可以用一个流形建模,而该流形的余切丛描述了该系统的相空间。 一个辛流形上的任何实值可微函数H可以用作一个能量函数或者叫哈密顿量。和任何一个哈密顿量相关有一个哈密顿向量场;该哈密顿向量场的是哈密顿-雅可比方程的解。哈密顿向量场定义了辛流形上的一个流场,称为哈密顿流场或者叫辛同胚。根据刘维尔定理,哈密顿流保持相空间的体积形式不变。
xsd:nonNegativeInteger 23348

data from the linked data cloud