Symbolic method (combinatorics)

http://dbpedia.org/resource/Symbolic_method_(combinatorics)

La Combinatòria analítica és una branca de la combinatòria que descriu fent servir funcions generadores, les de les quals sovint corresponen a funcions analítiques. Donada una funció generadora, la combinatòria analítica intenta descriure el d'una successió de fent servir tècniques algebraiques. Això sovint implica l'anàlisi de les singularitats de la funció analítica associada. Dos tipus de funcions generadores s'utilitzen comunament — i . Una tècnica important per obtenir funcions generadores és la . rdf:langString
En mathématiques, et plus précisément en combinatoire, la combinatoire analytique (en anglais : analytic combinatorics) est un ensemble de techniques décrivant des problèmes combinatoires dans le langage des séries génératrices, et s'appuyant en particulier sur l'analyse complexe pour obtenir des résultats asymptotiques sur les objets combinatoires initiaux. Les résultats de combinatoire analytique permettent notamment une analyse fine de la complexité de certains algorithmes. rdf:langString
La combinatoria analitica può definirsi come il settore della combinatoria che affronta i problemi delle configurazioni discrete mediante le tecniche ed il linguaggio delle serie generatrici; in particolare si utilizzano acquisizioni dell'analisi complessa per ottenere dei risultati sul comportamento asintotico delle cardinalità di configurazioni combinatorie. Molti risultati della combinatoria analitica forniscono strumenti efficaci per lo studio della complessità di vari algoritmi. rdf:langString
In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions. rdf:langString
rdf:langString Combinatòria analítica
rdf:langString Combinatoire analytique
rdf:langString Combinatoria analitica
rdf:langString Symbolic method (combinatorics)
xsd:integer 986932
xsd:integer 1059232078
rdf:langString La Combinatòria analítica és una branca de la combinatòria que descriu fent servir funcions generadores, les de les quals sovint corresponen a funcions analítiques. Donada una funció generadora, la combinatòria analítica intenta descriure el d'una successió de fent servir tècniques algebraiques. Això sovint implica l'anàlisi de les singularitats de la funció analítica associada. Dos tipus de funcions generadores s'utilitzen comunament — i . Una tècnica important per obtenir funcions generadores és la .
rdf:langString En mathématiques, et plus précisément en combinatoire, la combinatoire analytique (en anglais : analytic combinatorics) est un ensemble de techniques décrivant des problèmes combinatoires dans le langage des séries génératrices, et s'appuyant en particulier sur l'analyse complexe pour obtenir des résultats asymptotiques sur les objets combinatoires initiaux. Les résultats de combinatoire analytique permettent notamment une analyse fine de la complexité de certains algorithmes.
rdf:langString In combinatorics, the symbolic method is a technique for counting combinatorial objects. It uses the internal structure of the objects to derive formulas for their generating functions. The method is mostly associated with Philippe Flajolet and is detailed in Part A of his book with Robert Sedgewick, Analytic Combinatorics, while the rest of the book explains how to use complex analysis in order to get asymptotic and probabilistic results on the corresponding generating functions. During two centuries, generating functions were popping up via the corresponding recurrences on their coefficients (as can be seen in the seminal works of Bernoulli, Euler, Arthur Cayley, Schröder, Ramanujan, Riordan, Knuth, , etc.).It was then slowly realized that the generating functions were capturing many other facets of the initial discrete combinatorial objects, and that this could be done in a more direct formal way: The recursive nature of some combinatorial structures translates, via some isomorphisms, into noteworthy identities on the corresponding generating functions. Following the works of Pólya, further advances were thus done in this spirit in the 1970s with generic uses of languages for specifying combinatorial classes and their generating functions, as found in works by Foata and Schützenberger on permutations, Bender and Goldman on prefabs, and Joyal on combinatorial species. Note that this symbolic method in enumeration is unrelated to "Blissard's symbolic method", which is just another old name for umbral calculus. The symbolic method in combinatorics constitutes the first step of many analyses of combinatorial structures, which can then lead to fast computation schemes, to asymptotic properties and limit laws, to random generation, all of them being suitable to automatization via computer algebra.
rdf:langString La combinatoria analitica può definirsi come il settore della combinatoria che affronta i problemi delle configurazioni discrete mediante le tecniche ed il linguaggio delle serie generatrici; in particolare si utilizzano acquisizioni dell'analisi complessa per ottenere dei risultati sul comportamento asintotico delle cardinalità di configurazioni combinatorie. Molti risultati della combinatoria analitica forniscono strumenti efficaci per lo studio della complessità di vari algoritmi.
xsd:nonNegativeInteger 28730

data from the linked data cloud