Superposition principle
http://dbpedia.org/resource/Superposition_principle an entity of type: Thing
مبدأ التراكب في الفيزياء ينص على أنه في جميع الأنظمة الخطية تكون محصلة تأثيرين أو أكثر عبارة عن مجموع التأثيرين. فإذا كان التأثير A يُنتج الناتج X والتأثير B يُنتج الناتج Y فإن التأثيرين (A + B) ينتجان الناتج (X + Y). التراكب هو أحد الشروط الضرورية لاعتبار دالة ما «دالة خطية». ومن خواص الدالة الخطية أنها تفي بخاصية التراكب بالجمع، وأن تكون أيضا متجانسة من الدرجة الأولى (يجري عليها الضرب المعتاد scalar multiplication وتعرف بالمعادلة: (تراكب) يطبق مبدأ التراكب في الموجات الكهرومغناطيسية وفي البصريات وفي تقنية الاتصالات وفي جمع القوى في الميكانيكا الكلاسيكية وفي الحالات الكمومية في ميكانيكا الكم.
rdf:langString
Η αρχή της επαλληλίας ή αρχή της υπέρθεσης είναι μια πολύ βασική αρχή στην φυσική και τη θεωρία συστημάτων. Σύμφωνα με αυτήν, για κάθε το ολικό αποτέλεσμα ενός φαινομένου που αποτελείται από επί μέρους φαινόμενα, είναι ίσο με το άθροισμα των αποτελεσμάτων των επί μέρους.
rdf:langString
Gainezarmen printzipioa matematikako tresna bat da, bat bi zatitan banatzeko edo bi azpiproblema errazetan deskonposatzeko. Horrela, jatorrizko problema hau beste azpiproblemen batuketa edo gainezarmenaren bidez da.
rdf:langString
중첩 원리(重疊原理, Superposition principle)는 선형 미분 방정식의 해의 선형 결합(Linear combination of linear differential equation's solution)이 선형 미분 방정식의 또다른 해(Another solution of linear differential equation)가 된다는 원리다. 물리학에 등장하는 많은 미분 방정식 (파동 방정식, 라플라스 방정식, 슈뢰딩거 방정식, 맥스웰 방정식 등)은 선형 방정식이므로, 주어진 문제의 해를 이미 알고 있는 여러 개의 기본적 해의 중첩으로 나타낼 수 있다.
rdf:langString
Zasada superpozycji mówi, że pole (siła) pochodzące od kilku źródeł jest wektorową sumą pól (sił), jakie wytwarza każde z tych źródeł. Spełniają ją, w dość dużym zakresie, pole elektromagnetyczne i pole grawitacyjne, a w konsekwencji siły pochodzące od nich, m.in. siła Coulomba.
rdf:langString
Vid superposition adderas två eller flera lösningar till en ekvation vilket ger en ny lösning. Superposition förekommer främst inom fysiken (inom matematiken används oftare uttrycket linjäritet). Speciellt kan superpositionsprincipen användas för linjära differentialekvationer.Exempel på sådana ekvationer är vågekvationen samt Schrödingerekvationen.
rdf:langString
Принцип суперпозиції — допущення, згідно з яким результуючий ефект декількох незалежних впливів є сумою ефектів, викликаних кожним впливом окремо. Справедливий для систем або полів, які описуються лінійними рівняннями. Важливий у багатьох розділах класичної фізики: в механіці, теорії коливань і хвиль, теорії фізичних полів. Функція , яка задовольняє принципу суперпозиції називається лінійною функцією. Суперпозицію можна визначити за допомогою двох простих її властивостей: адитивності й однорідності: Адитивність: Однорідність: для скаляра a.
rdf:langString
在物理学与系统理论中,疊加原理(superposition principle),也叫叠加性质(superposition property),说对任何线性系统“在给定地点与时间,由两个或多个刺激产生的合成反应是由每个刺激单独产生的反应之代数和。” 从而如果输入 A 产生反应 X,输入 B 产生 Y,则输入 A+B 产生反应 (X+Y)。 用数学的话讲,对所有线性系统 F(x)=y,其中 x 是某种程度上的刺激(输入)而 y 是某种反应(输出),刺激的叠加(即“和”)得出分别反应的叠加: 在数学中,这个性质更常被叫做可加性。在绝大多数实际情形中,F 的可加性表明它是一个线性映射,也叫做一个线性函数或线性算子。 此原理在物理学与工程学中有许多应用,因许多物理系统可以线性系统为模型。例如,一个梁可作为一个线性系统,其中输入刺激是在梁上的结构荷重,而输出反应是梁的挠度。因为物理系统通常只是近似线性的,叠加原理往往只是真实物理现象的近似;從這裏可以察知這些系統的操作區域。 叠加原理适用于任何线性系统,包括代数方程、线性微分方程、以及这些形式的方程组。输入与反应可以是数、函数、向量、向量场、随时间变化的信号、或任何满足一定公理的其它对象。注意当涉及到向量与向量场时,叠加理解为向量和。
rdf:langString
El principi de superposició o teorema de superposició és un resultat matemàtic que permet descompondre un problema lineal en dos o més subproblemes més senzills, de manera que el problema original s'obté com "superposició" o "suma" d'aquests subproblemes més senzills.
rdf:langString
Unter Superposition, auch Superpositionsprinzip, versteht man in der Physik eine Überlagerung gleicher physikalischer Größen gemäß den Regeln einer Superposition in der Mathematik. Das Prinzip lässt sich in vielen Bereichen der Physik und für verschiedene Größen nutzen. So werden etwa in der linearen Wellentheorie Amplituden an einem Ort zu einem Zeitpunkt überlagert, um Interferenzmuster zu erklären. Bei verschiedenen Kraftfeldern wird die Gesamtkraft durch Addition der Einzelkräfte ermittelt, und in der Quantenmechanik werden Zustände in einem Hilbertraum addiert. Komplexe Lösungen lassen sich so oft als eine Überlagerung einfacher Lösungen darstellen. Das Prinzip setzt lineare Beziehungen für die zu überlagerten Größen voraus. Bei nicht-linearen Theorien wie etwa der Allgemeinen Relativ
rdf:langString
El principio de superposición o teorema de superposición es una herramienta matemática que permite descomponer un problema lineal o de otro tipo en dos o más subproblemas más sencillos, de tal manera que el problema original se obtiene como "superposición" o "suma" de estos subproblemas más sencillos.
rdf:langString
On dit qu'un système de type entrée-sortie est linéaire ou relève du principe de superposition si:
* à la somme de deux entrées quelconques correspond la somme des deux sorties correspondantes,
* à un multiple d'une entrée quelconque correspond le même multiple de la sortie correspondante. Dans le domaine des systèmes physiques et mécaniques, on appelle souvent l'entrée excitation et la sortie réponse. Plus précisément, si l'on note les excitations ƒ (par référence aux forces en mécanique) et les réponses x (par référence aux mouvements générés par les forces) :
rdf:langString
The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input (A + B) produces response (X + Y). A function that satisfies the superposition principle is called a linear function. Superposition can be defined by two simpler properties: additivity and homogeneityfor scalar a.
rdf:langString
In matematica e in fisica, il principio di sovrapposizione stabilisce che per un sistema dinamico lineare l'effetto di una somma di perturbazioni in ingresso è uguale alla somma degli effetti prodotti da ogni singola perturbazione. In altri termini, la risposta del sistema lineare ad una combinazione lineare di un certo numero di sollecitazioni linearmente indipendenti , con , può ottenersi sommando le singole risposte che ciascuna di esse produrrebbe se agisse da sola (quando cioè le altre sono nulle):
rdf:langString
Superpositie is in de natuur- en technische wetenschappen het bij elkaar voegen van twee of meer gelijksoortige natuurkundige grootheden. Het woord superpositie komt van het Latijnse super (boven) en positio (plaats, plaatsing). Belangrijke toepassingsgebieden zijn elektromagnetische golven in de optica en in de elektrotechniek en elektronica, stromen en spanningen in de elektrotechniek en elektronica, krachten in de klassieke mechanica, geluidsgolven in de gas- en vloeistofdynamica, kwantumtoestanden in de kwantummechanica, en diverse andere.
rdf:langString
物理学およびシステム理論における重ね合わせの原理(かさねあわせのげんり、英: superposition principle)とは、線形な系一般に成り立つ特徴的な原理。二つ以上の入力が同時に与えられた時に系が返す応答が、それぞれの入力が単独に加えられた場合に返される応答の総和となることをいう。つまり、入力 A に対して応答 X が返され、入力 B に対して応答 Y が返されるならば、入力 ( A + B ) に対して返される応答は ( X + Y ) である。 重ね合わせの原理が成り立つためには、加法性および斉次性の二つの性質が必要である。以下のような性質を持つ写像(線形写像)はそのような性質を持つものの一つである。 x, x1, x2は線型空間の要素(ベクトル)であり, a はスカラーである。入力に対して応答を対応付ける写像をFとすれば, 線型系の応答を表す写像は上の2式を満たす。 重ね合わせの原理はいかなる線形系においても適用できる。代数方程式、線形微分方程式およびそれらの方程式系は一例である。入力と応答になりうるのは、数、関数、ベクトル、ベクトル場、時間変化する信号など、ベクトル空間の公理系を満たす数学的対象であれば何でもよい。ベクトルやベクトル場を問題にする場合、重ね合わせとはベクトル和を指す。
rdf:langString
O princípio de superposição, também conhecido como propriedade de superposição, afirma que, para todos os sistemas lineares, a resposta líquida causada por dois ou mais estímulos é a soma das respostas que teriam sido causadas por cada estímulo individualmente. De forma que se a entrada A produz a resposta X e a entrada B produz a resposta Y, então a entrada ( A + B ) produz a resposta ( X + Y ). Uma função F(x) que satisfaça o princípio de superposição é chamada de função linear. A superposição pode ser definida por duas propriedades mais simples: aditividade e homogeneidade. para escalar a.
rdf:langString
Принцип суперпозиции — допущение, согласно которому результирующий эффект нескольких независимых воздействий есть сумма эффектов, вызываемых каждым воздействием в отдельности. Справедлив для систем или полей, которые описываются линейными уравнениями. Важен во многих разделах классической физики: в механике, теории колебаний и волн, теории физических полей. Конкретизация формулировки возможна применительно к определённой сфере. Например, в механике в самой простой формулировке принцип суперпозиции гласит:
rdf:langString
rdf:langString
مبدأ التراكب
rdf:langString
Principi de superposició
rdf:langString
Superposition (Physik)
rdf:langString
Αρχή της επαλληλίας
rdf:langString
Principio de superposición
rdf:langString
Gainezarmen printzipioa
rdf:langString
Principe de superposition
rdf:langString
Principio di sovrapposizione
rdf:langString
重ね合わせの原理
rdf:langString
중첩 원리
rdf:langString
Superpositie (natuurkunde)
rdf:langString
Zasada superpozycji
rdf:langString
Superposition principle
rdf:langString
Принцип суперпозиции
rdf:langString
Princípio da superposição
rdf:langString
Superposition
rdf:langString
叠加原理
rdf:langString
Принцип суперпозиції
xsd:integer
1201321
xsd:integer
1122573646
rdf:langString
مبدأ التراكب في الفيزياء ينص على أنه في جميع الأنظمة الخطية تكون محصلة تأثيرين أو أكثر عبارة عن مجموع التأثيرين. فإذا كان التأثير A يُنتج الناتج X والتأثير B يُنتج الناتج Y فإن التأثيرين (A + B) ينتجان الناتج (X + Y). التراكب هو أحد الشروط الضرورية لاعتبار دالة ما «دالة خطية». ومن خواص الدالة الخطية أنها تفي بخاصية التراكب بالجمع، وأن تكون أيضا متجانسة من الدرجة الأولى (يجري عليها الضرب المعتاد scalar multiplication وتعرف بالمعادلة: (تراكب) يطبق مبدأ التراكب في الموجات الكهرومغناطيسية وفي البصريات وفي تقنية الاتصالات وفي جمع القوى في الميكانيكا الكلاسيكية وفي الحالات الكمومية في ميكانيكا الكم.
rdf:langString
El principi de superposició o teorema de superposició és un resultat matemàtic que permet descompondre un problema lineal en dos o més subproblemes més senzills, de manera que el problema original s'obté com "superposició" o "suma" d'aquests subproblemes més senzills. Tècnicament, el principi de superposició afirma que quan les equacions de comportament que regeixen un problema físic són lineals, llavors el resultat d'una mesura o la solució d'un problema pràctic relacionat amb una magnitud extensiva associada al fenomen, quan estan presents els conjunts de factors causants A i B, es pot obtenir com la suma dels efectes d'A més els efectes de B.
rdf:langString
Unter Superposition, auch Superpositionsprinzip, versteht man in der Physik eine Überlagerung gleicher physikalischer Größen gemäß den Regeln einer Superposition in der Mathematik. Das Prinzip lässt sich in vielen Bereichen der Physik und für verschiedene Größen nutzen. So werden etwa in der linearen Wellentheorie Amplituden an einem Ort zu einem Zeitpunkt überlagert, um Interferenzmuster zu erklären. Bei verschiedenen Kraftfeldern wird die Gesamtkraft durch Addition der Einzelkräfte ermittelt, und in der Quantenmechanik werden Zustände in einem Hilbertraum addiert. Komplexe Lösungen lassen sich so oft als eine Überlagerung einfacher Lösungen darstellen. Das Prinzip setzt lineare Beziehungen für die zu überlagerten Größen voraus. Bei nicht-linearen Theorien wie etwa der Allgemeinen Relativitätstheorie ist es nicht anwendbar.
rdf:langString
Η αρχή της επαλληλίας ή αρχή της υπέρθεσης είναι μια πολύ βασική αρχή στην φυσική και τη θεωρία συστημάτων. Σύμφωνα με αυτήν, για κάθε το ολικό αποτέλεσμα ενός φαινομένου που αποτελείται από επί μέρους φαινόμενα, είναι ίσο με το άθροισμα των αποτελεσμάτων των επί μέρους.
rdf:langString
Gainezarmen printzipioa matematikako tresna bat da, bat bi zatitan banatzeko edo bi azpiproblema errazetan deskonposatzeko. Horrela, jatorrizko problema hau beste azpiproblemen batuketa edo gainezarmenaren bidez da.
rdf:langString
On dit qu'un système de type entrée-sortie est linéaire ou relève du principe de superposition si:
* à la somme de deux entrées quelconques correspond la somme des deux sorties correspondantes,
* à un multiple d'une entrée quelconque correspond le même multiple de la sortie correspondante. Dans le domaine des systèmes physiques et mécaniques, on appelle souvent l'entrée excitation et la sortie réponse. Plus précisément, si l'on note les excitations ƒ (par référence aux forces en mécanique) et les réponses x (par référence aux mouvements générés par les forces) :
* lorsque l'on sollicite le système par une entrée (excitation) ƒ1, la réponse (déplacement) est x1 ;
* lorsque l'on sollicite le système par une entrée (excitation) ƒ2, la réponse (déplacement) est x2 ; alors le système est dit linéaire si et seulement si pour λ1 et λ2 deux nombres quelconques, la réponse à l'excitation λ1ƒ1 + λ2ƒ2 est λ1x1 + λ2x2. Cette définition mathématique résume les deux conditions évoquées au début de cet article. Ce résultat se généralise alors à un nombre quelconque d'excitations. En d'autres termes, si on sait décomposer une excitation en une somme de fonctions simples, il sera éventuellement possible de calculer la réponse correspondante en additionnant des réponses individuelles calculables explicitement. D'un point de vue épistémologique, le principe de superposition permet l'usage d'une démarche de type analyse et synthèse :
* analyse : on découpe un problème en sous-problèmes : principe de la « fracture » (al-jabr d'Al-Khawarizmi, 833), ou encore « diviser chacune des difficultés que j'examinerais, en autant de parcelles qu'il se pourrait, et qu'il serait requis pour les mieux résoudre » (René Descartes, Discours de la méthode, 1637) ;
* on étudie chaque sous-problème (sollicitations simples ƒ1, ƒ2, …) ;
* synthèse : le problème complexe est la somme des sous-problèmes. En fait, les systèmes concrets possédant cette propriété sont rarissimes, pour ne pas dire inexistants. Bon nombre de systèmes peuvent être raisonnablement linéarisés, c'est-à-dire qu'on peut les considérer, en première approximation, comme linéaires
* soit en ignorant les petites non-linéarités par l'hypothèse des petites variations, voir systèmes oscillants à un degré de liberté et de manière générale grâce à la notion mathématique d'approximation linéaire,
* soit en procédant à une linéarisation optimisée dans le cas contraire. En pratique, bien que peu de systèmes soient strictement linéaires, bon nombre de théories relevant de la physique et de la mécanique sont construites en considérant les systèmes linéaires. Les systèmes non linéaires sont étudiés par un grand nombre de chercheurs, mais la difficulté de leur étude fait qu'ils sont plus difficilement accessibles à un public plus large (ingénieurs, techniciens...)
rdf:langString
El principio de superposición o teorema de superposición es una herramienta matemática que permite descomponer un problema lineal o de otro tipo en dos o más subproblemas más sencillos, de tal manera que el problema original se obtiene como "superposición" o "suma" de estos subproblemas más sencillos. Técnicamente, el principio de superposición afirma que cuando las ecuaciones de comportamiento que rigen un problema físico son lineales, entonces el resultado de una medida o la solución de un problema práctico relacionado con una magnitud extensiva asociada al fenómeno, cuando están presentes los conjuntos de factores causantes A y B, puede obtenerse como la suma de los efectos de A más los efectos de B.
rdf:langString
The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So that if input A produces response X and input B produces response Y then input (A + B) produces response (X + Y). A function that satisfies the superposition principle is called a linear function. Superposition can be defined by two simpler properties: additivity and homogeneityfor scalar a. This principle has many applications in physics and engineering because many physical systems can be modeled as linear systems. For example, a beam can be modeled as a linear system where the input stimulus is the load on the beam and the output response is the deflection of the beam. The importance of linear systems is that they are easier to analyze mathematically; there is a large body of mathematical techniques, frequency domain linear transform methods such as Fourier and Laplace transforms, and linear operator theory, that are applicable. Because physical systems are generally only approximately linear, the superposition principle is only an approximation of the true physical behavior. The superposition principle applies to any linear system, including algebraic equations, linear differential equations, and systems of equations of those forms. The stimuli and responses could be numbers, functions, vectors, vector fields, time-varying signals, or any other object that satisfies certain axioms. Note that when vectors or vector fields are involved, a superposition is interpreted as a vector sum. If the superposition holds, then it automatically also holds for all linear operations applied on these functions (due to definition), such as gradients, differentials or integrals (if they exist).
rdf:langString
중첩 원리(重疊原理, Superposition principle)는 선형 미분 방정식의 해의 선형 결합(Linear combination of linear differential equation's solution)이 선형 미분 방정식의 또다른 해(Another solution of linear differential equation)가 된다는 원리다. 물리학에 등장하는 많은 미분 방정식 (파동 방정식, 라플라스 방정식, 슈뢰딩거 방정식, 맥스웰 방정식 등)은 선형 방정식이므로, 주어진 문제의 해를 이미 알고 있는 여러 개의 기본적 해의 중첩으로 나타낼 수 있다.
rdf:langString
Superpositie is in de natuur- en technische wetenschappen het bij elkaar voegen van twee of meer gelijksoortige natuurkundige grootheden. Het woord superpositie komt van het Latijnse super (boven) en positio (plaats, plaatsing). Voor lineaire systemen geldt dat de respons op de som van twee signalen gelijk is aan de som van de responsen op elk van die signalen afzonderlijk. Dit wordt ook wel het superpositiebeginsel genoemd. Dit principe is een inherente eigenschap van lineaire systemen en geldt dus op alle gebieden waar lineaire vergelijkingen, al dan niet als eerste benadering, een verschijnsel beschrijven, zoals in de natuurkunde, de scheikunde en de technische wetenschappen. Heel algemeen vindt het ook in de wiskunde toepassing. De betekenis van het superpositiebeginsel ligt in de analyse van een lineair systeem waarvan de respons op een basisset inputvariabelen eenvoudig af te leiden is, en een willekeurige inputvariabele een superpositie is van de set basisvariabelen. Zo kan van veel elektronische circuits de respons op een zuiver sinusvormig signaal eenvoudig bepaald worden; daar een willekeurig signaal te herleiden is tot een superpositie van sinusvormige signalen (Fourieranalyse), is de respons op dat willekeurige signaal de superpositie van de responsen op de afzonderlijke sinusvormige signalen. Belangrijke toepassingsgebieden zijn elektromagnetische golven in de optica en in de elektrotechniek en elektronica, stromen en spanningen in de elektrotechniek en elektronica, krachten in de klassieke mechanica, geluidsgolven in de gas- en vloeistofdynamica, kwantumtoestanden in de kwantummechanica, en diverse andere.
rdf:langString
物理学およびシステム理論における重ね合わせの原理(かさねあわせのげんり、英: superposition principle)とは、線形な系一般に成り立つ特徴的な原理。二つ以上の入力が同時に与えられた時に系が返す応答が、それぞれの入力が単独に加えられた場合に返される応答の総和となることをいう。つまり、入力 A に対して応答 X が返され、入力 B に対して応答 Y が返されるならば、入力 ( A + B ) に対して返される応答は ( X + Y ) である。 重ね合わせの原理が成り立つためには、加法性および斉次性の二つの性質が必要である。以下のような性質を持つ写像(線形写像)はそのような性質を持つものの一つである。 x, x1, x2は線型空間の要素(ベクトル)であり, a はスカラーである。入力に対して応答を対応付ける写像をFとすれば, 線型系の応答を表す写像は上の2式を満たす。 多くの物理系は線形系としてモデル化できるため、重ね合わせの原理が適用できる例は物理学・工学に数多い。たとえば、はりは荷重を入力、たわみを応答とする線形系としてモデル化できる。線形系は数学的に解析が容易だという点で重要性が高く、フーリエ変換やラプラス変換のような周波数領域への線形変換、線形作用素理論など、多数の数学的技法が適用可能である。ただし、物理系の線形性は近似的にしか成り立たないこともある。そのような場合は重ね合わせの原理は真の物理的振る舞いの近似でしかない。 重ね合わせの原理はいかなる線形系においても適用できる。代数方程式、線形微分方程式およびそれらの方程式系は一例である。入力と応答になりうるのは、数、関数、ベクトル、ベクトル場、時間変化する信号など、ベクトル空間の公理系を満たす数学的対象であれば何でもよい。ベクトルやベクトル場を問題にする場合、重ね合わせとはベクトル和を指す。
rdf:langString
O princípio de superposição, também conhecido como propriedade de superposição, afirma que, para todos os sistemas lineares, a resposta líquida causada por dois ou mais estímulos é a soma das respostas que teriam sido causadas por cada estímulo individualmente. De forma que se a entrada A produz a resposta X e a entrada B produz a resposta Y, então a entrada ( A + B ) produz a resposta ( X + Y ). Uma função F(x) que satisfaça o princípio de superposição é chamada de função linear. A superposição pode ser definida por duas propriedades mais simples: aditividade e homogeneidade. F(x1 + x2) = F(x1) + F(x2) Aditividade F(ax) = aF(x) Homogeneidade para escalar a. Este princípio tem muitas aplicações em física e engenharia porque muitos sistemas físicos podem ser modelados como sistemas lineares. Por exemplo, um feixe pode ser modelado como um sistema linear onde o estímulo de entrada é a carga no feixe e a resposta de saída é a deflexão do feixe. A importância dos sistemas lineares é que eles são mais fáceis de analisar matematicamente. Há um grande corpo de técnicas matemáticas, métodos de transformação linear de domínio de frequência, como Fourier, transformadas de Laplace e operador linear, que são aplicáveis. Como os sistemas físicos geralmente são aproximadamente lineares, o princípio de superposição é apenas uma aproximação do verdadeiro comportamento físico. O princípio de superposição se aplica a qualquer sistema linear, incluindo equações algébricas, equações diferenciais lineares e sistemas de equações dessas formas. Os estímulos e respostas podem ser números, funções, vetores, campos de vetores, sinais que variam no tempo ou qualquer outro objeto que satisfaça certos axiomas. Observe que quando vetores ou campos de vetores estão envolvidos, uma superposição é interpretada como uma soma vetorial.
rdf:langString
In matematica e in fisica, il principio di sovrapposizione stabilisce che per un sistema dinamico lineare l'effetto di una somma di perturbazioni in ingresso è uguale alla somma degli effetti prodotti da ogni singola perturbazione. In altri termini, la risposta del sistema lineare ad una combinazione lineare di un certo numero di sollecitazioni linearmente indipendenti , con , può ottenersi sommando le singole risposte che ciascuna di esse produrrebbe se agisse da sola (quando cioè le altre sono nulle): Il principio di sovrapposizione esprime la possibilità di scomporre un problema lineare. Se si è in grado di scrivere i dati di ingresso in più componenti linearmente indipendenti (ad esempio, in un moto a due dimensioni si possono considerare la componente verticale e la componente orizzontale) allora è possibile risolvere il problema analizzando separatamente ciascuna delle componenti: si calcola ogni singola risposta e poi si sommano le singole risposte secondo la stessa proporzione (ovvero con gli stessi coefficienti ) in cui erano sommati i dati in ingresso.
rdf:langString
Zasada superpozycji mówi, że pole (siła) pochodzące od kilku źródeł jest wektorową sumą pól (sił), jakie wytwarza każde z tych źródeł. Spełniają ją, w dość dużym zakresie, pole elektromagnetyczne i pole grawitacyjne, a w konsekwencji siły pochodzące od nich, m.in. siła Coulomba.
rdf:langString
Принцип суперпозиции — допущение, согласно которому результирующий эффект нескольких независимых воздействий есть сумма эффектов, вызываемых каждым воздействием в отдельности. Справедлив для систем или полей, которые описываются линейными уравнениями. Важен во многих разделах классической физики: в механике, теории колебаний и волн, теории физических полей. Конкретизация формулировки возможна применительно к определённой сфере. Например, в механике в самой простой формулировке принцип суперпозиции гласит:
* результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил;
* любое сложное действие можно разделить на два и более простых. Наиболее известен принцип суперпозиции в электростатике: напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть векторная сумма напряженности полей отдельных зарядов. Принцип суперпозиции может принимать и иные формулировки, в том числе:
* энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц — в системе нет многочастичных взаимодействий;
* уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц. Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.
rdf:langString
Vid superposition adderas två eller flera lösningar till en ekvation vilket ger en ny lösning. Superposition förekommer främst inom fysiken (inom matematiken används oftare uttrycket linjäritet). Speciellt kan superpositionsprincipen användas för linjära differentialekvationer.Exempel på sådana ekvationer är vågekvationen samt Schrödingerekvationen.
rdf:langString
Принцип суперпозиції — допущення, згідно з яким результуючий ефект декількох незалежних впливів є сумою ефектів, викликаних кожним впливом окремо. Справедливий для систем або полів, які описуються лінійними рівняннями. Важливий у багатьох розділах класичної фізики: в механіці, теорії коливань і хвиль, теорії фізичних полів. Функція , яка задовольняє принципу суперпозиції називається лінійною функцією. Суперпозицію можна визначити за допомогою двох простих її властивостей: адитивності й однорідності: Адитивність: Однорідність: для скаляра a.
rdf:langString
在物理学与系统理论中,疊加原理(superposition principle),也叫叠加性质(superposition property),说对任何线性系统“在给定地点与时间,由两个或多个刺激产生的合成反应是由每个刺激单独产生的反应之代数和。” 从而如果输入 A 产生反应 X,输入 B 产生 Y,则输入 A+B 产生反应 (X+Y)。 用数学的话讲,对所有线性系统 F(x)=y,其中 x 是某种程度上的刺激(输入)而 y 是某种反应(输出),刺激的叠加(即“和”)得出分别反应的叠加: 在数学中,这个性质更常被叫做可加性。在绝大多数实际情形中,F 的可加性表明它是一个线性映射,也叫做一个线性函数或线性算子。 此原理在物理学与工程学中有许多应用,因许多物理系统可以线性系统为模型。例如,一个梁可作为一个线性系统,其中输入刺激是在梁上的结构荷重,而输出反应是梁的挠度。因为物理系统通常只是近似线性的,叠加原理往往只是真实物理现象的近似;從這裏可以察知這些系統的操作區域。 叠加原理适用于任何线性系统,包括代数方程、线性微分方程、以及这些形式的方程组。输入与反应可以是数、函数、向量、向量场、随时间变化的信号、或任何满足一定公理的其它对象。注意当涉及到向量与向量场时,叠加理解为向量和。
xsd:nonNegativeInteger
20435