Sufficient statistic
http://dbpedia.org/resource/Sufficient_statistic an entity of type: Thing
En estadística, un estadístico suficiente es un estadístico que tiene la propiedad de la suficiencia con respecto a un modelo estadístico y su parámetro desconocido, es decir, que "ningún otro estadístico que puede ser calculado sobre la misma muestra proporciona información adicional sobre su valor". Se puede probar que un estadístico es suficiente por el teorema de factorización de Fisher-Neyman.
rdf:langString
Les statistiques exhaustives sont liées à la notion d'information et en particulier à l'information de Fisher. Elles servent entre autres à améliorer des estimateurs grâce à l'usage du théorème de Rao-Blackwell et du théorème de Lehmann-Scheffé. Intuitivement, parler d'une statistique exhaustive revient à dire que cette statistique contient l'ensemble de l'information sur le(s) paramètre(s) de la loi de probabilité.
rdf:langString
In statistica, la sufficienza di un'analisi statistica (intesa come funzione di un campione di osservazioni) definisce formalmente la capacità di tale funzione di rappresentare in maniera sintetica l'informazione contenuta nel campione. Una funzione che presenti tale caratteristica è definita, a partire dal lavoro di Ronald Fisher, una statistica sufficiente.
rdf:langString
十分統計量(じゅうぶんとうけいりょう)とは、十分性を持つ統計量を指す。統計量が十分性を持つ、また十分であるとは、その統計量が下記の性質を満たすことを指す。 ある統計データに対し、それが従う確率分布を示す母数 θ に対応するその統計量の値が決められた条件下で、データが出現する条件付き確率分布が、もはやθ にはよらない。 直感的にいうと、「母数θ(直接は求められず、推定しかできない)に対する十分統計量は、θ の統計学的推定に関する限り、データから得られる情報を漏らさず含んでいる」ということになる。 十分統計量はロナルド・フィッシャーによって導入された、統計学的推定において基本的な概念である。
rdf:langString
In de statistiek zegt men dat een steekproeffunctie voldoende is voor een bepaalde familie kansverdelingen, als de steekproeffunctie alle informatie bevat over de kansverdeling waaruit de steekproef komt. De gehele steekproef geeft dus niet meer informatie, dan de voldoende steekproeffunctie. Het begrip werd ingevoerd door Fisher en houdt in het geval van een geparametriseerde familie kansverdelingen in, dat de voorwaardelijke verdeling van de steekproef, gegeven de waarde van de steekproeffunctie, niet afhangt van de parameter.
rdf:langString
在統計學中,一個關於一個統計模型和相關的未知母數的充分統計量(Sufficient Statistic)是指“没有任何其他可以以同一樣本中計算得出的統計量可以提供任何有關未知參數的额外訊息”。
rdf:langString
In der mathematischen Statistik ist eine suffiziente Statistik, auch erschöpfende Statistik genannt, eine Statistik, die alle relevante Information bezüglich des unbekannten Parameters aus der Zufallsstichprobe enthält. Aus maßtheoretischer Sicht ist Suffizienz bezüglich eines Modells eine mögliche Eigenschaft messbarer Funktionen, die aus dem Stichprobenraum in einen beliebigen Messraum abbilden. Man charakterisiert dabei solche Abbildungen als suffizient (auch: erschöpfend), die einen hochdimensionalen Datenvektor in eine einfachere Form transformieren, ohne dabei wesentliche Informationen über die zu Grunde liegende Wahrscheinlichkeitsverteilung zu verlieren. Gegenstück der Suffizienz ist die Verteilungsfreiheit, sie entspricht einer uninformativen Transformation.
rdf:langString
In statistics, a statistic is sufficient with respect to a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter". In particular, a statistic is sufficient for a family of probability distributions if the sample from which it is calculated gives no additional information than the statistic, as to which of those probability distributions is the sampling distribution.
rdf:langString
Достаточная статистика для параметра определяющая некоторое семейство распределений вероятности — статистика такая, что условная вероятность выборки при данном значении не зависит от параметра То есть выполняется равенство: Достаточная статистика таким образом, содержит в себе всю информацию о параметре , которая может быть получена на основе выборки X. Поэтому понятие достаточной статистики широко используется в теории оценки параметров.
rdf:langString
Достатня статистика для параметра що визначає деяке сімейство розподілів ймовірності — статистика така, що умовна імовірність вибірки при даному значенні не залежить від параметра Тобто виконується рівність: Достатня статистика таким чином містить у собі всю інформацію про параметр що може бути одержана на основі вибірки X. Тому поняття достатньої статистики широко використовується в теорії оцінки параметрів. Достатня статистика називається мінімальною достатньою, якщо для кожної достатньої статистики T існує невипадкова вимірна функція g, що майже напевно.
rdf:langString
rdf:langString
Suffiziente Statistik
rdf:langString
Suficiencia (estadística)
rdf:langString
Statistique exhaustive
rdf:langString
Sufficienza (statistica)
rdf:langString
十分統計量
rdf:langString
Voldoende (statistiek)
rdf:langString
Sufficient statistic
rdf:langString
Достаточная статистика
rdf:langString
Достатня статистика
rdf:langString
充分统计量
xsd:integer
140841
xsd:integer
1115509688
rdf:langString
A.S.
rdf:langString
S/s091070
rdf:langString
Kholevo
rdf:langString
Sufficient statistic
rdf:langString
In der mathematischen Statistik ist eine suffiziente Statistik, auch erschöpfende Statistik genannt, eine Statistik, die alle relevante Information bezüglich des unbekannten Parameters aus der Zufallsstichprobe enthält. Aus maßtheoretischer Sicht ist Suffizienz bezüglich eines Modells eine mögliche Eigenschaft messbarer Funktionen, die aus dem Stichprobenraum in einen beliebigen Messraum abbilden. Man charakterisiert dabei solche Abbildungen als suffizient (auch: erschöpfend), die einen hochdimensionalen Datenvektor in eine einfachere Form transformieren, ohne dabei wesentliche Informationen über die zu Grunde liegende Wahrscheinlichkeitsverteilung zu verlieren. Gegenstück der Suffizienz ist die Verteilungsfreiheit, sie entspricht einer uninformativen Transformation. Anschaulich formuliert sind also genau solche Statistiken suffizient, die sämtliche Informationen über die zu schätzenden Parameter des Modells beinhalten, die in der Stichprobe enthalten sind. Die Suffizienz zählt neben der Erwartungstreue und der Äquivarianz/Invarianz zu den klassischen Reduktionsprinzipien der mathematischen Statistik. Ihre Bedeutung erhält die Suffizienz durch den Satz von Rao-Blackwell. Aus ihm folgt, dass „optimale“ Schätzer im Bezug auf den mittleren quadratischen Fehler oder entsprechende Verallgemeinerungen immer in der Menge der suffizienten Schätzer zu finden sind.
rdf:langString
En estadística, un estadístico suficiente es un estadístico que tiene la propiedad de la suficiencia con respecto a un modelo estadístico y su parámetro desconocido, es decir, que "ningún otro estadístico que puede ser calculado sobre la misma muestra proporciona información adicional sobre su valor". Se puede probar que un estadístico es suficiente por el teorema de factorización de Fisher-Neyman.
rdf:langString
Les statistiques exhaustives sont liées à la notion d'information et en particulier à l'information de Fisher. Elles servent entre autres à améliorer des estimateurs grâce à l'usage du théorème de Rao-Blackwell et du théorème de Lehmann-Scheffé. Intuitivement, parler d'une statistique exhaustive revient à dire que cette statistique contient l'ensemble de l'information sur le(s) paramètre(s) de la loi de probabilité.
rdf:langString
In statistics, a statistic is sufficient with respect to a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter". In particular, a statistic is sufficient for a family of probability distributions if the sample from which it is calculated gives no additional information than the statistic, as to which of those probability distributions is the sampling distribution. A related concept is that of linear sufficiency, which is weaker than sufficiency but can be applied in some cases where there is no sufficient statistic, although it is restricted to linear estimators. The Kolmogorov structure function deals with individual finite data; the related notion there is the algorithmic sufficient statistic. The concept is due to Sir Ronald Fisher in 1920. Stephen Stigler noted in 1973 that the concept of sufficiency had fallen out of favor in descriptive statistics because of the strong dependence on an assumption of the distributional form (see below), but remained very important in theoretical work.
rdf:langString
In statistica, la sufficienza di un'analisi statistica (intesa come funzione di un campione di osservazioni) definisce formalmente la capacità di tale funzione di rappresentare in maniera sintetica l'informazione contenuta nel campione. Una funzione che presenti tale caratteristica è definita, a partire dal lavoro di Ronald Fisher, una statistica sufficiente.
rdf:langString
十分統計量(じゅうぶんとうけいりょう)とは、十分性を持つ統計量を指す。統計量が十分性を持つ、また十分であるとは、その統計量が下記の性質を満たすことを指す。 ある統計データに対し、それが従う確率分布を示す母数 θ に対応するその統計量の値が決められた条件下で、データが出現する条件付き確率分布が、もはやθ にはよらない。 直感的にいうと、「母数θ(直接は求められず、推定しかできない)に対する十分統計量は、θ の統計学的推定に関する限り、データから得られる情報を漏らさず含んでいる」ということになる。 十分統計量はロナルド・フィッシャーによって導入された、統計学的推定において基本的な概念である。
rdf:langString
In de statistiek zegt men dat een steekproeffunctie voldoende is voor een bepaalde familie kansverdelingen, als de steekproeffunctie alle informatie bevat over de kansverdeling waaruit de steekproef komt. De gehele steekproef geeft dus niet meer informatie, dan de voldoende steekproeffunctie. Het begrip werd ingevoerd door Fisher en houdt in het geval van een geparametriseerde familie kansverdelingen in, dat de voorwaardelijke verdeling van de steekproef, gegeven de waarde van de steekproeffunctie, niet afhangt van de parameter.
rdf:langString
Достаточная статистика для параметра определяющая некоторое семейство распределений вероятности — статистика такая, что условная вероятность выборки при данном значении не зависит от параметра То есть выполняется равенство: Достаточная статистика таким образом, содержит в себе всю информацию о параметре , которая может быть получена на основе выборки X. Поэтому понятие достаточной статистики широко используется в теории оценки параметров. Наиболее простой достаточной статистикой является сама выборка , однако действительно важными являются случаи, когда размерность достаточной статистики значительно меньше размерности выборки, в частности, когда достаточная статистика выражается лишь несколькими числами. Достаточная статистика называется минимально достаточной, если для каждой достаточной статистики T существует неслучайная измеримая функция g, что почти всюду.
rdf:langString
Достатня статистика для параметра що визначає деяке сімейство розподілів ймовірності — статистика така, що умовна імовірність вибірки при даному значенні не залежить від параметра Тобто виконується рівність: Достатня статистика таким чином містить у собі всю інформацію про параметр що може бути одержана на основі вибірки X. Тому поняття достатньої статистики широко використовується в теорії оцінки параметрів. Найпростішою достатньою статистикою є сама вибірка проте справді важливими є випадки коли величина достатньої статистики значно менша від величини вибірки, зокрема коли достатня статистика виражається лише кількома числами. Достатня статистика називається мінімальною достатньою, якщо для кожної достатньої статистики T існує невипадкова вимірна функція g, що майже напевно.
rdf:langString
在統計學中,一個關於一個統計模型和相關的未知母數的充分統計量(Sufficient Statistic)是指“没有任何其他可以以同一樣本中計算得出的統計量可以提供任何有關未知參數的额外訊息”。
xsd:nonNegativeInteger
35824