Stochastic approximation

http://dbpedia.org/resource/Stochastic_approximation an entity of type: WikicatStatisticalApproximations

Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации.Основоположниками метода стохастической аппроксимации являются Кифер, Вольфовиц, Робинс, Монро . rdf:langString
Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations. The earliest, and prototypical, algorithms of this kind are the Robbins–Monro and Kiefer–Wolfowitz algorithms introduced respectively in 1951 and 1952. rdf:langString
rdf:langString Stochastic approximation
rdf:langString Стохастическая аппроксимация
xsd:integer 8979437
xsd:integer 1113581937
rdf:langString Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations. In a nutshell, stochastic approximation algorithms deal with a function of the form which is the expected value of a function depending on a random variable . The goal is to recover properties of such a function without evaluating it directly. Instead, stochastic approximation algorithms use random samples of to efficiently approximate properties of such as zeros or extrema. Recently, stochastic approximations have found extensive applications in the fields of statistics and machine learning, especially in settings with big data. These applications range from stochastic optimization methods and algorithms, to online forms of the EM algorithm, reinforcement learning via temporal differences, and deep learning, and others.Stochastic approximation algorithms have also been used in the social sciences to describe collective dynamics: fictitious play in learning theory and consensus algorithms can be studied using their theory. The earliest, and prototypical, algorithms of this kind are the Robbins–Monro and Kiefer–Wolfowitz algorithms introduced respectively in 1951 and 1952.
rdf:langString Стохастическая аппроксимация — рекуррентный метод построения состоятельной последовательности оценок решений уравнений регрессии и экстремумов функций регрессии в задачах непараметрического оценивания. В биологии, химии, медицине используется для анализа результатов опытов. В теории автоматического управления применяется как средство решения задач распознавания, идентификации, обучения и адаптации.Основоположниками метода стохастической аппроксимации являются Кифер, Вольфовиц, Робинс, Монро .
xsd:nonNegativeInteger 26942

data from the linked data cloud