Steinberg symbol
http://dbpedia.org/resource/Steinberg_symbol
En mathématiques, un symbole de Steinberg est une fonction de deux variables qui généralise le symbole de Hilbert et joue un rôle en K-théorie algébrique des corps.
rdf:langString
In mathematics a Steinberg symbol is a pairing function which generalises the Hilbert symbol and plays a role in the algebraic K-theory of fields. It is named after mathematician Robert Steinberg. For a field F we define a Steinberg symbol (or simply a symbol) to be a function, where G is an abelian group, written multiplicatively, such that
* is bimultiplicative;
* if then . The symbols on F derive from a "universal" symbol, which may be regarded as taking values in . By a theorem of Matsumoto, this group is and is part of the Milnor K-theory for a field.
rdf:langString
rdf:langString
Symbole de Steinberg
rdf:langString
Steinberg symbol
xsd:integer
35903941
xsd:integer
1009047471
rdf:langString
En mathématiques, un symbole de Steinberg est une fonction de deux variables qui généralise le symbole de Hilbert et joue un rôle en K-théorie algébrique des corps.
rdf:langString
In mathematics a Steinberg symbol is a pairing function which generalises the Hilbert symbol and plays a role in the algebraic K-theory of fields. It is named after mathematician Robert Steinberg. For a field F we define a Steinberg symbol (or simply a symbol) to be a function, where G is an abelian group, written multiplicatively, such that
* is bimultiplicative;
* if then . The symbols on F derive from a "universal" symbol, which may be regarded as taking values in . By a theorem of Matsumoto, this group is and is part of the Milnor K-theory for a field.
xsd:nonNegativeInteger
4513