Stein manifold

http://dbpedia.org/resource/Stein_manifold an entity of type: WikicatComplexManifolds

Eine Stein'sche Mannigfaltigkeit ist ein Objekt aus der höherdimensionalen Funktionentheorie. Benannt wurde dieses nach dem Mathematiker Karl Stein. Eine Stein'sche Mannigfaltigkeit ist eine spezielle komplexe Mannigfaltigkeit. Sie ist die natürliche Definitionsmenge von holomorphen Funktionen, denn es ist sichergestellt, dass es genügend holomorphe Funktionen gibt; also außer den konstanten Funktionen weitere holomorphe Funktionen existieren. rdf:langString
En matemáticas, las variedades de Stein generalizan la noción de en el espacio complejo n-dimensional incluyendo las subvariedades complejas cerradas de este espacio afín. Fueron introducidas por Karl Stein en 1951 y son relevantes para la geometría compleja por su flexibilidad en términos del principio de Oka y la geometría simpléctica por su equivalencia con las variedades Weinstein. En geometría holomorfa, i.e. compleja, las variedades de Stein son el análogo de la variedades afines en geometría algebraica. rdf:langString
En mathématiques, et plus précisément en théorie des variétés complexes en plusieurs variables, une variété de Stein est une sous-variété complexe de l'espace vectoriel de dimension complexe n. Ils ont été présentés par et nommés d'après Karl Stein. Un espace de Stein est similaire à une variété de Stein mais est autorisé à avoir des singularités. Les espaces de Stein sont les analogues des variétés affines ou des schémas affines en géométrie algébrique. rdf:langString
In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after Karl Stein. A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry. rdf:langString
에서 슈타인 다양체(Stein多樣體, 영어: Stein manifold)는 복소 벡터 공간의 부분공간으로 나타낼 수 있는 다양체다. 다변수 정칙함수의 정의역으로 쓰인다. rdf:langString
数学の多変数複素函数論および複素多様体論におけるシュタイン多様体(シュタインたようたい、英: Stein manifold)とは、複素 n 次元ベクトル空間のある複素部分多様体のことを言う。考案者の Karl Stein の名にちなむ。同様の概念にシュタイン空間(Stein space)があるが、こちらは特異性を持つことも許されている。シュタイン空間は、代数幾何学におけるアフィン多様体、あるいはアフィンスキームと類似の概念である。 rdf:langString
In de theorie van de functies van meer complexe variabelen en complexe variëteiten, deelgebieden van de wiskunde, is een Stein-variëteit, een complexe deelvariëteit van de vectorruimte van n complexe dimensies. De naam komt van de Duitse wiskundige Karl Stein. rdf:langString
rdf:langString Stein manifold
rdf:langString Steinsche Mannigfaltigkeit
rdf:langString Variedad de Stein
rdf:langString Variété de Stein
rdf:langString 슈타인 다양체
rdf:langString シュタイン多様体
rdf:langString Stein-variëteit
xsd:integer 1053909
xsd:integer 1119193728
rdf:langString Karl Stein
rdf:langString Karl
rdf:langString Stein
xsd:integer 1951
rdf:langString Eine Stein'sche Mannigfaltigkeit ist ein Objekt aus der höherdimensionalen Funktionentheorie. Benannt wurde dieses nach dem Mathematiker Karl Stein. Eine Stein'sche Mannigfaltigkeit ist eine spezielle komplexe Mannigfaltigkeit. Sie ist die natürliche Definitionsmenge von holomorphen Funktionen, denn es ist sichergestellt, dass es genügend holomorphe Funktionen gibt; also außer den konstanten Funktionen weitere holomorphe Funktionen existieren.
rdf:langString En matemáticas, las variedades de Stein generalizan la noción de en el espacio complejo n-dimensional incluyendo las subvariedades complejas cerradas de este espacio afín. Fueron introducidas por Karl Stein en 1951 y son relevantes para la geometría compleja por su flexibilidad en términos del principio de Oka y la geometría simpléctica por su equivalencia con las variedades Weinstein. En geometría holomorfa, i.e. compleja, las variedades de Stein son el análogo de la variedades afines en geometría algebraica.
rdf:langString En mathématiques, et plus précisément en théorie des variétés complexes en plusieurs variables, une variété de Stein est une sous-variété complexe de l'espace vectoriel de dimension complexe n. Ils ont été présentés par et nommés d'après Karl Stein. Un espace de Stein est similaire à une variété de Stein mais est autorisé à avoir des singularités. Les espaces de Stein sont les analogues des variétés affines ou des schémas affines en géométrie algébrique.
rdf:langString In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after Karl Stein. A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry.
rdf:langString 에서 슈타인 다양체(Stein多樣體, 영어: Stein manifold)는 복소 벡터 공간의 부분공간으로 나타낼 수 있는 다양체다. 다변수 정칙함수의 정의역으로 쓰인다.
rdf:langString 数学の多変数複素函数論および複素多様体論におけるシュタイン多様体(シュタインたようたい、英: Stein manifold)とは、複素 n 次元ベクトル空間のある複素部分多様体のことを言う。考案者の Karl Stein の名にちなむ。同様の概念にシュタイン空間(Stein space)があるが、こちらは特異性を持つことも許されている。シュタイン空間は、代数幾何学におけるアフィン多様体、あるいはアフィンスキームと類似の概念である。
rdf:langString In de theorie van de functies van meer complexe variabelen en complexe variëteiten, deelgebieden van de wiskunde, is een Stein-variëteit, een complexe deelvariëteit van de vectorruimte van n complexe dimensies. De naam komt van de Duitse wiskundige Karl Stein.
xsd:nonNegativeInteger 10023

data from the linked data cloud