Stationary process

http://dbpedia.org/resource/Stationary_process an entity of type: WikicatAutomobiles

Ein stationärer stochastischer Prozess ist ein spezieller stochastischer Prozess und damit Untersuchungsobjekt der Wahrscheinlichkeitstheorie. Man unterscheidet * schwach stationäre Prozesse (selten auch kovarianzstationäre Prozesse genannt) * stark stationäre Prozesse, bei denen der Zusatz „stark“ oft weggelassen wird und man lediglich von stationären Prozessen spricht. Beide besitzen zeitunabhängige Eigenschaften. rdf:langString
定常過程(ていじょうかてい、英: stationary process)とは、時間や位置によって確率分布が変化しない確率過程を指す。このため、平均や分散も(もしあれば)時間や位置によって変化しない。 例えば、ホワイトノイズは定常的である。しかし、シンバルを鳴らしたときの音は定常的ではなく、時間と共に音が弱まっていく。 定常性(Stationarity)は時系列の解析でも重要であり、時系列データを定常的なものに変換することがよく行われる。例えば、経済的データは季節による変動があったり、価格レベルに依存する。ある定常過程と1つ以上の過程に傾向(トレンド)が認められるとき、これら過程を「傾向定常的; trend stationary」であるという。このようなデータから定常的成分だけを抜き出して分析することを「傾向除去; de-trending」と呼ぶ。 離散時間の定常過程で、標本値も離散的(とりうる値が N 個に限定されている)な場合を(Bernoulli scheme)と呼ぶ。N = 2 の場合を特にベルヌーイ過程(Bernoulli process)と呼ぶ。 rdf:langString
확률론에서 정상 과정(定常過程, 영어: stationary process) 또는 시불변 과정 또는 안정 과정은 확률변수 간의 확률 분포가 시간에 상관없이 일정한 확률 과정이다. 분포가 시간과 독립적이기 때문에, 확률변수의 기댓값이나 분산 등의 값도 역시 시간과 독립이 된다. rdf:langString
Een stationair proces is een proces dat onafhankelijk is van de tijd, een stochastisch proces waarbij de simultane verdeling niet verandert als het in de tijd wordt verschoven. Een functie is voor een bepaald argument stationair als een kleine verandering van het argument een in verhouding kleine verandering in de functiewaarde geeft, bijvoorbeeld in de orde van het kwadraat van de verandering van het argument. Zie Stationair punt. rdf:langString
在数学中,平稳过程(英語:Stationary process),又稱严格平稳过程(英語:Strict(ly) stationary process)或強平穩過程(英語:Strong(ly) stationary process)是一種特殊的隨機過程,在其中任取一段期間或空間()裡的聯合機率分佈,與將這段期間任意平移後的新期間()之聯合機率分佈相等。这样,数学期望和方差这些参数也不随时间或位置变化。 例如,白噪声(AWGN)就是平稳过程,鐃鈸的敲击声是非平稳的。尽管铙钹的敲击声基本上是白噪声,但是这个噪声随着时间变化:在敲击前是安静的,在敲击后声音逐渐减弱。 在时间序列分析中稳态作为一个工具使用,在这里原始数据经常被转换为平稳态,例如经济学数据经常随着季节或者价格水平变化。如果这些过程是平稳过程与一个或者多个呈现一定趋势的过程的线性组合,那么这些过程就可以表述为趋势平稳。将这些数据进行转换保留平稳数据用于分析的过程称为解趋势(de-trending)。 采样空间也是离散的平稳过程称为,离散采样空间中每个随机变量可能取得 N'个可能值中的任意一个。当 N = 2 的时候,这个过程叫做伯努利过程。 rdf:langString
Стаціонарність — властивість процесу не змінювати свої характеристики з часом. Термін застосовується у кількох розділах науки. rdf:langString
Stacionární náhodný proces (neboli stochastický proces vykazující stacionaritu) je náhodný proces, jehož všechny nebo některé statistické vlastnosti jsou nezávislé na čase. Požadujeme-li, aby všechny vlastnosti náhodného procesu nezávisely na čase, hovoříme o silně stacionárním procesu čili silné stacionaritě, též o striktně stacionárním procesu. Formálně lze silnou stacionaritu vyjádřit požadavkemkde je (kumulativní) distribuční funkce silně stacionárního procesu . rdf:langString
En matemáticas, un proceso estacionario (o proceso estrictamente estacionario) es un proceso estocástico cuya distribución de probabilidad en un instante de tiempo fijo o una posición fija es constante para todos los instantes de tiempo o posiciones. En consecuencia, parámetros tales como la media y la varianza, si existen, no varían a lo largo del tiempo o la posición. Por ejemplo, el ruido blanco es estacionario. Sin embargo, el sonido de un golpe de platillos no es estacionario, pues la energía acústica del golpe (y por lo tanto su varianza) disminuye con el tiempo. rdf:langString
In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Consequently, parameters such as mean and variance also do not change over time. If you draw a line through the middle of a stationary process then it should be flat; it may have 'seasonal' cycles, but overall it does not trend up nor down. rdf:langString
Pour accéder aux propriétés essentielles d'un signal physique il peut être commode de le considérer comme une réalisation d'un processus aléatoire (voir quelques précisions dans Processus continu). Le problème est largement simplifié si le processus associé au signal peut être considéré comme un processus stationnaire, c'est-à-dire si ses propriétés statistiques caractérisées par des espérances mathématiques sont indépendantes du temps. Lorsque cette hypothèse est vraisemblable, le processus bâti autour du signal est rendu ergodique, les moyennes temporelles étant identiques aux moyennes d'ensemble. On trouvera ci-dessous quelques éléments qui précisent un peu ces notions. rdf:langString
In matematica e statistica, un processo stazionario (o processo fortemente stazionario) è un processo stocastico la cui distribuzione di probabilità congiunta non cambia se viene traslata nel tempo. Di conseguenza, parametri quali la media e la varianza, se sono presenti, pure non cambiano nel tempo. rdf:langString
Proces stacjonarny – proces stochastyczny, w którym wszystkie momenty oraz momenty łączne są stałe. Gdy wartość średnia, wariancja oraz funkcja autokorelacji zmieniają się wraz ze zmianą czasu, proces losowy nazywa się niestacjonarnym. W szczególnym przypadku, gdy wartość średnia oraz funkcja autokorelacji nie zależą od czasu proces losowy nazywa się słabo stacjonarny lub stacjonarny w szerszym zakresie. Średnia wartość słabo stacjonarnych procesów jest stała, a funkcja autokorelacji zależy tylko od przesunięcia rdf:langString
Стационарность или постоянство — свойство процесса не менять свои характеристики со временем. Понятие используется в нескольких разделах науки. Стационарный процесс — это стохастический процесс, у которого не изменяется распределение вероятности при смещении во времени. Следовательно, такие параметры, как среднее значение и дисперсия. Поскольку стационарность лежит в основе многих статистических процедур, используемых в анализе временных рядов, нестационарные данные часто преобразуются, чтобы стать стационарными. Наиболее распространенной причиной нарушения стационарности является тенденция к среднему значению, которое может быть обусловлено либо наличием единого корня, либо детерминированного тренда. В первом случае единичного корня стохастические удары имеют постоянные эффекты, и процесс rdf:langString
rdf:langString Procés estacionari
rdf:langString Stacionární náhodný proces
rdf:langString Stationärer stochastischer Prozess
rdf:langString Proceso estacionario
rdf:langString Processus stationnaire
rdf:langString Processo stazionario
rdf:langString 정상 과정
rdf:langString 定常過程
rdf:langString Proces stacjonarny
rdf:langString Stationair proces
rdf:langString Stationary process
rdf:langString Стационарность
rdf:langString 平稳过程
rdf:langString Стаціонарність
xsd:integer 329898
xsd:integer 1124796115
rdf:langString En matemàtiques i estadística, un procés estacionari (o un procés estricte/estrictament estacionari o un procés fort/fortament estacionari) és un procés estocàstic la distribució de probabilitat conjunta incondicional del qual no canvia quan es desplaça en el temps. En conseqüència, paràmetres com la mitjana i la variància tampoc canvien amb el temps. Per tenir una intuïció de l'estacionarietat, es pot imaginar un pèndol sense fricció . Oscil·la cap endavant i cap enrere en un moviment oscil·latori, però l' amplitud i la freqüència es mantenen constants. Encara que el pèndol es mou, el procés és estacionari ja que les seves "estadístiques" són constants (freqüència i amplitud). Tanmateix, si s'aplicaria una força al pèndol (per exemple, la fricció amb l'aire), la freqüència o l'amplitud canviarien, fent que el procés no sigui estacionari. Com que l'estacionarietat és un supòsit subjacent a molts procediments estadístics utilitzats en l'anàlisi de sèries temporals, les dades no estacionàries sovint es transformen per convertir-se en estacionàries. La causa més freqüent de violació de l'estacionarietat és una tendència a la mitjana, que pot ser deguda a la presència d'una o a una tendència determinista. En el primer cas d'una arrel unitària, els xocs estocàstics tenen efectes permanents i el procés no . En l'últim cas d'una tendència determinista, el procés s'anomena , i els xocs estocàstics només tenen efectes transitoris després dels quals la variable tendeix cap a una mitjana en evolució determinista (no constant).
rdf:langString Stacionární náhodný proces (neboli stochastický proces vykazující stacionaritu) je náhodný proces, jehož všechny nebo některé statistické vlastnosti jsou nezávislé na čase. Požadujeme-li, aby všechny vlastnosti náhodného procesu nezávisely na čase, hovoříme o silně stacionárním procesu čili silné stacionaritě, též o striktně stacionárním procesu. Formálně lze silnou stacionaritu vyjádřit požadavkemkde je (kumulativní) distribuční funkce silně stacionárního procesu . Vedle silné stacionarity, kterou je u empiricky se vyskytujících náhodných procesů obtížné prakticky ověřit, se používají i slabší definice (slabá stacionarita), požadující časovou stabilitu jen některých vybraných statistických vlastností. Typickou volbou jsou střední hodnota, rozptyl a autokorelační, resp. autokovarianční funkce. Nejslabší prakticky používanou možností je stacionarita ve střední hodnotě, kdy požadujeme pouze to, aby střední hodnota procesu se neměnila v čase.
rdf:langString Ein stationärer stochastischer Prozess ist ein spezieller stochastischer Prozess und damit Untersuchungsobjekt der Wahrscheinlichkeitstheorie. Man unterscheidet * schwach stationäre Prozesse (selten auch kovarianzstationäre Prozesse genannt) * stark stationäre Prozesse, bei denen der Zusatz „stark“ oft weggelassen wird und man lediglich von stationären Prozessen spricht. Beide besitzen zeitunabhängige Eigenschaften.
rdf:langString En matemáticas, un proceso estacionario (o proceso estrictamente estacionario) es un proceso estocástico cuya distribución de probabilidad en un instante de tiempo fijo o una posición fija es constante para todos los instantes de tiempo o posiciones. En consecuencia, parámetros tales como la media y la varianza, si existen, no varían a lo largo del tiempo o la posición. Por ejemplo, el ruido blanco es estacionario. Sin embargo, el sonido de un golpe de platillos no es estacionario, pues la energía acústica del golpe (y por lo tanto su varianza) disminuye con el tiempo. Un proceso estacionario de , donde el espacio muestral también es discreto (de manera que la variable aleatoria pueda tomar uno de N valores posibles) se llama . Cuando N = 2, el proceso se llama proceso de Bernoulli.
rdf:langString In mathematics and statistics, a stationary process (or a strict/strictly stationary process or strong/strongly stationary process) is a stochastic process whose unconditional joint probability distribution does not change when shifted in time. Consequently, parameters such as mean and variance also do not change over time. If you draw a line through the middle of a stationary process then it should be flat; it may have 'seasonal' cycles, but overall it does not trend up nor down. Since stationarity is an assumption underlying many statistical procedures used in time series analysis, non-stationary data are often transformed to become stationary. The most common cause of violation of stationarity is a trend in the mean, which can be due either to the presence of a unit root or of a deterministic trend. In the former case of a unit root, stochastic shocks have permanent effects, and the process is not mean-reverting. In the latter case of a deterministic trend, the process is called a trend-stationary process, and stochastic shocks have only transitory effects after which the variable tends toward a deterministically evolving (non-constant) mean. A trend stationary process is not strictly stationary, but can easily be transformed into a stationary process by removing the underlying trend, which is solely a function of time. Similarly, processes with one or more unit roots can be made stationary through differencing. An important type of non-stationary process that does not include a trend-like behavior is a cyclostationary process, which is a stochastic process that varies cyclically with time. For many applications strict-sense stationarity is too restrictive. Other forms of stationarity such as wide-sense stationarity or N-th-order stationarity are then employed. The definitions for different kinds of stationarity are not consistent among different authors (see Other terminology).
rdf:langString Pour accéder aux propriétés essentielles d'un signal physique il peut être commode de le considérer comme une réalisation d'un processus aléatoire (voir quelques précisions dans Processus continu). Le problème est largement simplifié si le processus associé au signal peut être considéré comme un processus stationnaire, c'est-à-dire si ses propriétés statistiques caractérisées par des espérances mathématiques sont indépendantes du temps. Lorsque cette hypothèse est vraisemblable, le processus bâti autour du signal est rendu ergodique, les moyennes temporelles étant identiques aux moyennes d'ensemble. On trouvera ci-dessous quelques éléments qui précisent un peu ces notions. L'hypothèse stationnaire est admise dans de nombreux modèles théoriques, facile à réaliser dans des simulations numériques, beaucoup plus difficile voire impossible à justifier à propos d'un signal réel, faute de pouvoir accéder à d'autres réalisations du même processus. Il faut très généralement se contenter d'une justification grossière, utilisée par exemple dans l'analyse des enregistrements de vagues, qui consiste à dire qu'un enregistrement d'une vingtaine de minutes est assez court pour assurer la stationnarité (il est peu probable que les conditions météorologiques aient été modifiées) mais assez long pour qu'il fournisse des informations statistiques pertinentes. Pour un autre point de vue voir Stationnarité d'une série temporelle.
rdf:langString 定常過程(ていじょうかてい、英: stationary process)とは、時間や位置によって確率分布が変化しない確率過程を指す。このため、平均や分散も(もしあれば)時間や位置によって変化しない。 例えば、ホワイトノイズは定常的である。しかし、シンバルを鳴らしたときの音は定常的ではなく、時間と共に音が弱まっていく。 定常性(Stationarity)は時系列の解析でも重要であり、時系列データを定常的なものに変換することがよく行われる。例えば、経済的データは季節による変動があったり、価格レベルに依存する。ある定常過程と1つ以上の過程に傾向(トレンド)が認められるとき、これら過程を「傾向定常的; trend stationary」であるという。このようなデータから定常的成分だけを抜き出して分析することを「傾向除去; de-trending」と呼ぶ。 離散時間の定常過程で、標本値も離散的(とりうる値が N 個に限定されている)な場合を(Bernoulli scheme)と呼ぶ。N = 2 の場合を特にベルヌーイ過程(Bernoulli process)と呼ぶ。
rdf:langString 확률론에서 정상 과정(定常過程, 영어: stationary process) 또는 시불변 과정 또는 안정 과정은 확률변수 간의 확률 분포가 시간에 상관없이 일정한 확률 과정이다. 분포가 시간과 독립적이기 때문에, 확률변수의 기댓값이나 분산 등의 값도 역시 시간과 독립이 된다.
rdf:langString Een stationair proces is een proces dat onafhankelijk is van de tijd, een stochastisch proces waarbij de simultane verdeling niet verandert als het in de tijd wordt verschoven. Een functie is voor een bepaald argument stationair als een kleine verandering van het argument een in verhouding kleine verandering in de functiewaarde geeft, bijvoorbeeld in de orde van het kwadraat van de verandering van het argument. Zie Stationair punt.
rdf:langString In matematica e statistica, un processo stazionario (o processo fortemente stazionario) è un processo stocastico la cui distribuzione di probabilità congiunta non cambia se viene traslata nel tempo. Di conseguenza, parametri quali la media e la varianza, se sono presenti, pure non cambiano nel tempo. Poiché la stazionarietà è un presupposto di fondo in molte procedure statistiche utilizzate nell'analisi delle serie storiche, i dati non stazionari sono spesso trasformati per diventare stazionari. La causa più comune di violazione della stazionarietà sono le tendenze in media, che possono essere dovute sia alla presenza di una , sia ad una tendenza deterministica. Nel secondo caso, il processo è chiamato processo con tendenza stazionaria, gli shock stocastici hanno solo effetti transitori e il processo è mean-reverting (su una media che cambia deterministicamente nel tempo). Al contrario, nel primo caso gli shock stocastici hanno effetti permanenti e il processo non è mean-reverting.Un processo con tendenza stazionaria non è strettamente stazionario, ma può facilmente essere reso tale rimuovendo la tendenza di fondo (funzione unicamente del tempo). Analogamente, i processi con una o più radici unitarie possono essere resi stazionari attraverso la differenziazione.Un tipo importante di processo non stazionario che non include un comportamento di tendenza simile è il processo ciclostazionario. Un "processo stazionario" non è la stessa cosa di un "processo con una ". Infatti, ci sono ulteriori possibilità di confusione con l'uso della parola "stazionario" nel contesto dei processi stocastici; per esempio, talvolta si dice che una catena di Markov omogenea nel tempo ha "probabilità di transizione stazionarie". Inoltre, tutti i processi casuali di Markov stazionari sono omogenei nel tempo.
rdf:langString Proces stacjonarny – proces stochastyczny, w którym wszystkie momenty oraz momenty łączne są stałe. Gdy wartość średnia, wariancja oraz funkcja autokorelacji zmieniają się wraz ze zmianą czasu, proces losowy nazywa się niestacjonarnym. W szczególnym przypadku, gdy wartość średnia oraz funkcja autokorelacji nie zależą od czasu proces losowy nazywa się słabo stacjonarny lub stacjonarny w szerszym zakresie. Średnia wartość słabo stacjonarnych procesów jest stała, a funkcja autokorelacji zależy tylko od przesunięcia W matematyce proces stacjonarny (lub proces ściśle stacjonarny) – proces stochastyczny, dla którego rozkłady gęstości prawdopodobieństwa zmiennej losowej nie zmieniają się wraz z przesunięciem w czasie lub przestrzeni. W efekcie, parametry takie jak średnia i wariancja także nie ulegają zmianie wraz z przesunięciem w czasie lub przestrzeni. Przykładem procesu stacjonarnego jest proces szumu białego. Procesem niestacjonarnym jest zaś proces jednokrotnego uderzenia w talerze perkusyjne, gdzie moc akustyczną kolizji zmniejsza się wraz z upływem czasu. Dyskretny w czasie proces stacjonarny, gdzie przestrzeń zdarzeń jest także dyskretna (zmienna losowa może przyjmować jedną z możliwych wartości) jest znany jako schemat Bernoulliego. Jeśli proces jest nazywany procesem Bernoulliego.
rdf:langString Стационарность или постоянство — свойство процесса не менять свои характеристики со временем. Понятие используется в нескольких разделах науки. Стационарный процесс — это стохастический процесс, у которого не изменяется распределение вероятности при смещении во времени. Следовательно, такие параметры, как среднее значение и дисперсия. Поскольку стационарность лежит в основе многих статистических процедур, используемых в анализе временных рядов, нестационарные данные часто преобразуются, чтобы стать стационарными. Наиболее распространенной причиной нарушения стационарности является тенденция к среднему значению, которое может быть обусловлено либо наличием единого корня, либо детерминированного тренда. В первом случае единичного корня стохастические удары имеют постоянные эффекты, и процесс не является средним возвратом. В последнем случае детерминированного тренда процесс называется стационарным процессом тренда, а стохастические шоки имеют только временные эффекты, после которых переменная стремится к детерминистически развивающемуся (непостоянному) среднему значению. Тенденционный стационарный процесс не является строго стационарным, но может легко трансформироваться в стационарный процесс, устраняя лежащий в основе тренд, который является исключительно функцией времени. Аналогичным образом, процессы с одним или несколькими единичными корнями могут быть сделаны стационарными через различие. Важным видом нестационарного процесса, который не включает трендоподобное поведение, является циклостационарный процесс, который является стохастическим процессом, который циклически изменяется со временем.
rdf:langString 在数学中,平稳过程(英語:Stationary process),又稱严格平稳过程(英語:Strict(ly) stationary process)或強平穩過程(英語:Strong(ly) stationary process)是一種特殊的隨機過程,在其中任取一段期間或空間()裡的聯合機率分佈,與將這段期間任意平移後的新期間()之聯合機率分佈相等。这样,数学期望和方差这些参数也不随时间或位置变化。 例如,白噪声(AWGN)就是平稳过程,鐃鈸的敲击声是非平稳的。尽管铙钹的敲击声基本上是白噪声,但是这个噪声随着时间变化:在敲击前是安静的,在敲击后声音逐渐减弱。 在时间序列分析中稳态作为一个工具使用,在这里原始数据经常被转换为平稳态,例如经济学数据经常随着季节或者价格水平变化。如果这些过程是平稳过程与一个或者多个呈现一定趋势的过程的线性组合,那么这些过程就可以表述为趋势平稳。将这些数据进行转换保留平稳数据用于分析的过程称为解趋势(de-trending)。 采样空间也是离散的平稳过程称为,离散采样空间中每个随机变量可能取得 N'个可能值中的任意一个。当 N = 2 的时候,这个过程叫做伯努利过程。
rdf:langString Стаціонарність — властивість процесу не змінювати свої характеристики з часом. Термін застосовується у кількох розділах науки.
rdf:langString #F5FFFA
rdf:langString #0073CF
xsd:integer 6
xsd:nonNegativeInteger 20884

data from the linked data cloud