Stark conjectures
http://dbpedia.org/resource/Stark_conjectures an entity of type: Thing
数論において、スターク予想(英: Stark conjectures)とは、代数体のガロア拡大 K/k に付随するアルティン L 函数のテイラー展開の主要項の係数についての予想である。スターク予想はが で提示し、後日 Tateが拡張した。スターク予想は、数体のデデキントのゼータ函数のテイラー展開の主要項を表す解析的類数公式を一般化して、体の (S-units)に関連する単数基準と有理数との積として表すものである。スタークは K/k がアーベル拡大で、L 函数の s = 0 における位数 が 1 の場合について予想を精密化し、と呼ばれる S 単数の存在を予想した。 Rubin と は、この精密化された予想をさらに高次の位数へ拡張した。
rdf:langString
In number theory, the Stark conjectures, introduced by Stark and later expanded by Tate, give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields. The conjectures generalize the analytic class number formula expressing the leading coefficient of the Taylor series for the Dedekind zeta function of a number field as the product of a regulator related to S-units of the field and a rational number. When K/k is an abelian extension and the order of vanishing of the L-function at s = 0 is one, Stark gave a refinement of his conjecture, predicting the existence of certain S-units, called Stark units. Rubin and Cristian Dumitru Popescu gave extensions of thi
rdf:langString
rdf:langString
スターク予想
rdf:langString
Stark conjectures
xsd:integer
5685631
xsd:integer
1045234031
rdf:langString
Harold Stark
rdf:langString
Stark
xsd:integer
1971
1975
1976
1980
rdf:langString
In number theory, the Stark conjectures, introduced by Stark and later expanded by Tate, give conjectural information about the coefficient of the leading term in the Taylor expansion of an Artin L-function associated with a Galois extension K/k of algebraic number fields. The conjectures generalize the analytic class number formula expressing the leading coefficient of the Taylor series for the Dedekind zeta function of a number field as the product of a regulator related to S-units of the field and a rational number. When K/k is an abelian extension and the order of vanishing of the L-function at s = 0 is one, Stark gave a refinement of his conjecture, predicting the existence of certain S-units, called Stark units. Rubin and Cristian Dumitru Popescu gave extensions of this refined conjecture to higher orders of vanishing.
rdf:langString
数論において、スターク予想(英: Stark conjectures)とは、代数体のガロア拡大 K/k に付随するアルティン L 函数のテイラー展開の主要項の係数についての予想である。スターク予想はが で提示し、後日 Tateが拡張した。スターク予想は、数体のデデキントのゼータ函数のテイラー展開の主要項を表す解析的類数公式を一般化して、体の (S-units)に関連する単数基準と有理数との積として表すものである。スタークは K/k がアーベル拡大で、L 函数の s = 0 における位数 が 1 の場合について予想を精密化し、と呼ばれる S 単数の存在を予想した。 Rubin と は、この精密化された予想をさらに高次の位数へ拡張した。
xsd:nonNegativeInteger
8361