Standard probability space
http://dbpedia.org/resource/Standard_probability_space
Un espace probabilisé standard également appelé espace de probabilité de Lebesgue-Rokhlin ou plus simplement espace de Lebesgue est un espace probabilisé satisfaisant certaines hypothèses introduites par Vladimir Rokhlin en 1940. Informellement, il s'agit d'un espace probabiliste composé d'un intervalle et/ou d'un nombre fini ou dénombrable d'atomes.
* Portail des probabilités et de la statistique
rdf:langString
In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space (the latter term is ambiguous) is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.
rdf:langString
rdf:langString
Espace probabilisé standard
rdf:langString
Standard probability space
xsd:integer
10406190
xsd:integer
1122963358
rdf:langString
Standard_probability_space
rdf:langString
*
rdf:langString
Standard probability space
rdf:langString
Un espace probabilisé standard également appelé espace de probabilité de Lebesgue-Rokhlin ou plus simplement espace de Lebesgue est un espace probabilisé satisfaisant certaines hypothèses introduites par Vladimir Rokhlin en 1940. Informellement, il s'agit d'un espace probabiliste composé d'un intervalle et/ou d'un nombre fini ou dénombrable d'atomes.
* Portail des probabilités et de la statistique
rdf:langString
In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space (the latter term is ambiguous) is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms. The theory of standard probability spaces was started by von Neumann in 1932 and shaped by Vladimir Rokhlin in 1940. Rokhlin showed that the unit interval endowed with the Lebesgue measure has important advantages over general probability spaces, yet can be effectively substituted for many of these in probability theory. The dimension of the unit interval is not an obstacle, as was clear already to Norbert Wiener. He constructed the Wiener process (also called Brownian motion) in the form of a measurable map from the unit interval to the space of continuous functions.
xsd:nonNegativeInteger
29008