Square-free integer

http://dbpedia.org/resource/Square-free_integer an entity of type: Abstraction100002137

في الرياضيات، عدد صحيح خال من المربعات (بالإنجليزية: Square-free integer)‏ هو عدد صحيح غير قابل للقسمة على أي مربع كامل باستثناء الواحد. على سبيل المثال، العدد 10 هو خال من المربعات، بينما العدد 18 ليس خال من المربعات لأنه قابل للقسمة على 9 = 32. الأعداد الموجبة الأولى الخالية من المربعات هي 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... (متسلسلة A005117 في OEIS) نظرية الحلقات تعمم مفهوم . rdf:langString
Bezčtvercové celé číslo je takové číslo, které je celé a bezčtvercové, tedy celé číslo, které není dělitelné čtvercem. Například číslo 10 = 5 × 2 je bezčtvercové celé číslo, ale číslo 18 = 2 × 3² bezčtvercové není. Nejmenší bezčtvercová přirozená čísla jsou: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, … rdf:langString
Eine natürliche Zahl heißt quadratfrei, wenn es außer der Eins keine Quadratzahl gibt, die diese Zahl teilt. Anders formuliert tritt in der eindeutigen Primfaktorzerlegung einer quadratfreien Zahl keine Primzahl mehr als einmal auf. Beispielsweise ist die Zahl 6 = 2·3 quadratfrei, während 54 = 2·32·3 nicht quadratfrei ist. Die ersten 20 quadratfreien Zahlen sind 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, … (Folge in OEIS) rdf:langString
En matematiko, kvadrato-libera entjero estas entjero, kiu ne estas dividebla per kvadrato de primo. Ekzemple, 10 estas kvadrato-libera sed 18 ne estas, ĉar ĝi estas dividebla per 9 = 32. La plej malgrandaj kvadrato-liberaj nombroj estas 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... rdf:langString
En mathématiques et plus précisément en arithmétique, un entier sans facteur carré (souvent appelé, par tradition ou commodité quadratfrei ou squarefree) est un entier relatif qui n'est divisible par aucun carré parfait, excepté 1. Par exemple, 10 est sans facteur carré mais 18 ne l'est pas, puisqu'il est divisible par 9 = 32. Les dix plus petits nombres de la suite de l'OEIS des entiers positifs sans facteur carré sont 1, 2, 3, 5, 6, 7, 10, 11, 13, 14. rdf:langString
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... (sequence in the OEIS) rdf:langString
수론에서 제곱 인수가 없는 정수(제곱 因數가 없는 整數, 영어: squarefree integer, 독일어: quadratfrei Zahl)는 1이 아닌 제곱수를 인수로 갖지 않는 양의 정수이다. rdf:langString
In matematica, un privo di quadrati o intero libero da quadrati è un numero che non è divisibile per nessun quadrato perfetto tranne 1. Ad esempio, 10 è privo di quadrati, mentre 18 no, in quanto è divisibile per 9 = 32. I più piccoli interi privi di quadrati sono: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113... rdf:langString
数学において、無平方数(むへいほうすう、英: square-free integer)または平方因子を持たない整数 (integer without square factors) とは、平方因子を持たない数、すなわち 1 より大きい完全平方で割り切れないような整数(通例として正の整数)をいう。与えられた整数が無平方数であるとき、その整数は無平方 (square-free, quadratfrei) であるともいう。例えば、10 は無平方だが、18 は 9 = 32 で割り切れるので無平方数でない。無平方な正整数は小さい順に 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, …(オンライン整数列大辞典の数列 A005117) rdf:langString
Een kwadraatvrij geheel getal is in de wiskunde een geheel getal dat niet deelbaar is door een kwadraatgetal, behalve door 1. Voorbeelden * Het getal een kwadraatvrij geheel getal omdat en en geen kwadraten zijn. * Het getal is geen kwadraatvrij getal, want is deelbaar door . De rij van positieve kwadraatvrije getallen begint als volgt: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33 rdf:langString
Liczba bezkwadratowa – taka liczba całkowita, która nie jest podzielna przez żaden kwadrat liczby całkowitej z wyjątkiem 1. Na przykład 10 jest liczbą bezkwadratową, ale 18 nie jest, bo 18 jest podzielne przez 9 = 3². Najmniejsze dodatnie liczby bezkwadratowe to: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... (OEIS: A005117.) rdf:langString
Inom matematiken är ett kvadratfritt tal ett heltal som inte är delbart med någon perfekt kvadrat, utom 1. Till exempel är 10 kvadratfritt men inte 18, eftersom 18 är delbart med 9 = 32. De första positiva kvadratfria talen är: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, … (talföljd i OEIS) rdf:langString
Em matemática, um inteiro sem fator quadrático ou livre de quadrados ou, ainda, um quadratfrei, é um número inteiro que não é múltiplo de nenhum quadrado perfeito. rdf:langString
无平方因子数(英語:square-free integer)是指其因數中,沒有一個是平方數的正整數。簡言之,將一個這樣的數予以質因數分解後,所有質因數的冪都不會大於或等於2。例如:54=,由於54有因數是平方數(),所以54不是无平方因子数;而55=,55沒有因數是平方數,所以55是无平方因子数。 以數學概念說明:若一個數是无平方因子数,則對於任意平方數且則;或者說當且皆為質數時,對於任意,而言, 另一方面,默比乌斯函数當且僅當且或為无平方因子数時 前20個無平方因數的數是:1、2、3、5、6、7、10、11、13、14、15、17、19、21、22、23、26、29、30、31(OEIS數列) 由於无平方因子数的所有質因數指數均為一次方,故除1以外,有關數的正因數數目必定是2的非負整數次方。 將无平方因子数分解為兩數之積,這兩數一定互質。 依定義,顯然所有的質數、楔形数、質數階乘與有4個正因數的半質數都是无平方因子数。 rdf:langString
Un número entero n es libre de cuadrados si no existe un número primo p tal que p2 divide a n. Esto quiere decir que los factores primos de n son todos distintos, luego De esta forma, 10=2·5 es libre de cuadrados, pero 20=22·5 no lo es, porque es divisible por un cuadrado. Los primeros enteros libres de cuadrados son: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... (sucesión A005117 en OEIS) rdf:langString
В математике свободным от квадратов, или бесквадратным, называется число, которое не делится ни на один квадрат, кроме 1. К примеру, 10 — свободное от квадратов, а 18 — нет, так как 18 делится на 9 = 32. Начало последовательности свободных от квадратов чисел таково: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, … последовательность в OEIS Теория колец обобщает понятие бесквадратности следующим образом: Элемент r факториального кольца R называется свободным от квадратов, если он не делится на нетривиальный квадрат. , rdf:langString
У математиці вільним від квадратів, або безквадратним, називається число, яке не ділиться на жоден квадрат, крім 1. Наприклад, 10 — вільне від квадратів, а 18 — ні, оскільки 18 ділиться на 9 = 32. Початок послідовності вільних від квадратів чисел такий: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, … послідовність з Онлайн енциклопедії послідовностей цілих чисел, OEIS Теорія кілець узагальнює поняття безквадратності таким чином: Елемент r факторіального кільця R називається вільним від квадратів, якщо він не ділиться на нетривіальний квадрат. , rdf:langString
rdf:langString عدد صحيح خال من المربعات
rdf:langString Bezčtvercové celé číslo
rdf:langString Quadratfreie Zahl
rdf:langString Kvadrato-libera entjero
rdf:langString Entero libre de cuadrados
rdf:langString Entier sans facteur carré
rdf:langString Intero privo di quadrati
rdf:langString 제곱 인수가 없는 정수
rdf:langString 平方因子をもたない整数
rdf:langString Kwadraatvrij geheel getal
rdf:langString Liczba bezkwadratowa
rdf:langString Square-free integer
rdf:langString Свободное от квадратов число
rdf:langString Inteiro sem fator quadrático
rdf:langString Kvadratfritt tal
rdf:langString Вільне від квадратів число
rdf:langString 无平方因子数
xsd:integer 29525
xsd:integer 1122568404
rdf:langString في الرياضيات، عدد صحيح خال من المربعات (بالإنجليزية: Square-free integer)‏ هو عدد صحيح غير قابل للقسمة على أي مربع كامل باستثناء الواحد. على سبيل المثال، العدد 10 هو خال من المربعات، بينما العدد 18 ليس خال من المربعات لأنه قابل للقسمة على 9 = 32. الأعداد الموجبة الأولى الخالية من المربعات هي 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... (متسلسلة A005117 في OEIS) نظرية الحلقات تعمم مفهوم .
rdf:langString Bezčtvercové celé číslo je takové číslo, které je celé a bezčtvercové, tedy celé číslo, které není dělitelné čtvercem. Například číslo 10 = 5 × 2 je bezčtvercové celé číslo, ale číslo 18 = 2 × 3² bezčtvercové není. Nejmenší bezčtvercová přirozená čísla jsou: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, …
rdf:langString Eine natürliche Zahl heißt quadratfrei, wenn es außer der Eins keine Quadratzahl gibt, die diese Zahl teilt. Anders formuliert tritt in der eindeutigen Primfaktorzerlegung einer quadratfreien Zahl keine Primzahl mehr als einmal auf. Beispielsweise ist die Zahl 6 = 2·3 quadratfrei, während 54 = 2·32·3 nicht quadratfrei ist. Die ersten 20 quadratfreien Zahlen sind 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, … (Folge in OEIS)
rdf:langString En matematiko, kvadrato-libera entjero estas entjero, kiu ne estas dividebla per kvadrato de primo. Ekzemple, 10 estas kvadrato-libera sed 18 ne estas, ĉar ĝi estas dividebla per 9 = 32. La plej malgrandaj kvadrato-liberaj nombroj estas 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ...
rdf:langString Un número entero n es libre de cuadrados si no existe un número primo p tal que p2 divide a n. Esto quiere decir que los factores primos de n son todos distintos, luego De esta forma, 10=2·5 es libre de cuadrados, pero 20=22·5 no lo es, porque es divisible por un cuadrado. Los primeros enteros libres de cuadrados son: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... (sucesión A005117 en OEIS) Alternativamente, si el número a al expresarlo como producto de factores primos, todos ellos tienen exponente 1, se dice que a es entero exento de cuadrados.​
rdf:langString En mathématiques et plus précisément en arithmétique, un entier sans facteur carré (souvent appelé, par tradition ou commodité quadratfrei ou squarefree) est un entier relatif qui n'est divisible par aucun carré parfait, excepté 1. Par exemple, 10 est sans facteur carré mais 18 ne l'est pas, puisqu'il est divisible par 9 = 32. Les dix plus petits nombres de la suite de l'OEIS des entiers positifs sans facteur carré sont 1, 2, 3, 5, 6, 7, 10, 11, 13, 14.
rdf:langString In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, 10 = 2 ⋅ 5 is square-free, but 18 = 2 ⋅ 3 ⋅ 3 is not, because 18 is divisible by 9 = 32. The smallest positive square-free numbers are 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... (sequence in the OEIS)
rdf:langString 수론에서 제곱 인수가 없는 정수(제곱 因數가 없는 整數, 영어: squarefree integer, 독일어: quadratfrei Zahl)는 1이 아닌 제곱수를 인수로 갖지 않는 양의 정수이다.
rdf:langString In matematica, un privo di quadrati o intero libero da quadrati è un numero che non è divisibile per nessun quadrato perfetto tranne 1. Ad esempio, 10 è privo di quadrati, mentre 18 no, in quanto è divisibile per 9 = 32. I più piccoli interi privi di quadrati sono: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113...
rdf:langString 数学において、無平方数(むへいほうすう、英: square-free integer)または平方因子を持たない整数 (integer without square factors) とは、平方因子を持たない数、すなわち 1 より大きい完全平方で割り切れないような整数(通例として正の整数)をいう。与えられた整数が無平方数であるとき、その整数は無平方 (square-free, quadratfrei) であるともいう。例えば、10 は無平方だが、18 は 9 = 32 で割り切れるので無平方数でない。無平方な正整数は小さい順に 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, …(オンライン整数列大辞典の数列 A005117)
rdf:langString Een kwadraatvrij geheel getal is in de wiskunde een geheel getal dat niet deelbaar is door een kwadraatgetal, behalve door 1. Voorbeelden * Het getal een kwadraatvrij geheel getal omdat en en geen kwadraten zijn. * Het getal is geen kwadraatvrij getal, want is deelbaar door . De rij van positieve kwadraatvrije getallen begint als volgt: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33
rdf:langString Liczba bezkwadratowa – taka liczba całkowita, która nie jest podzielna przez żaden kwadrat liczby całkowitej z wyjątkiem 1. Na przykład 10 jest liczbą bezkwadratową, ale 18 nie jest, bo 18 jest podzielne przez 9 = 3². Najmniejsze dodatnie liczby bezkwadratowe to: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, ... (OEIS: A005117.)
rdf:langString Inom matematiken är ett kvadratfritt tal ett heltal som inte är delbart med någon perfekt kvadrat, utom 1. Till exempel är 10 kvadratfritt men inte 18, eftersom 18 är delbart med 9 = 32. De första positiva kvadratfria talen är: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, … (talföljd i OEIS)
rdf:langString В математике свободным от квадратов, или бесквадратным, называется число, которое не делится ни на один квадрат, кроме 1. К примеру, 10 — свободное от квадратов, а 18 — нет, так как 18 делится на 9 = 32. Начало последовательности свободных от квадратов чисел таково: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, … последовательность в OEIS Теория колец обобщает понятие бесквадратности следующим образом: Элемент r факториального кольца R называется свободным от квадратов, если он не делится на нетривиальный квадрат. Свободные от квадратов элементы также могут быть охарактеризованы исходя из их разложения на простые сомножители: любой ненулевой элемент r может быть представлен в виде произведения простых элементов , причем все простые сомножители pi различны, а — некоторая единица (обратимый элемент) кольца.
rdf:langString Em matemática, um inteiro sem fator quadrático ou livre de quadrados ou, ainda, um quadratfrei, é um número inteiro que não é múltiplo de nenhum quadrado perfeito.
rdf:langString У математиці вільним від квадратів, або безквадратним, називається число, яке не ділиться на жоден квадрат, крім 1. Наприклад, 10 — вільне від квадратів, а 18 — ні, оскільки 18 ділиться на 9 = 32. Початок послідовності вільних від квадратів чисел такий: 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, … послідовність з Онлайн енциклопедії послідовностей цілих чисел, OEIS Теорія кілець узагальнює поняття безквадратності таким чином: Елемент r факторіального кільця R називається вільним від квадратів, якщо він не ділиться на нетривіальний квадрат. Вільні від квадратів елементи також можуть бути схарактеризовані виходячи з їх розкладання на прості множники: будь-який ненульовий елемент r може бути поданий у вигляді добутку простих елементів , причому всі прості множники p i різні, а — деяка одиниця (оборотний елемент) кільця.
rdf:langString 无平方因子数(英語:square-free integer)是指其因數中,沒有一個是平方數的正整數。簡言之,將一個這樣的數予以質因數分解後,所有質因數的冪都不會大於或等於2。例如:54=,由於54有因數是平方數(),所以54不是无平方因子数;而55=,55沒有因數是平方數,所以55是无平方因子数。 以數學概念說明:若一個數是无平方因子数,則對於任意平方數且則;或者說當且皆為質數時,對於任意,而言, 另一方面,默比乌斯函数當且僅當且或為无平方因子数時 前20個無平方因數的數是:1、2、3、5、6、7、10、11、13、14、15、17、19、21、22、23、26、29、30、31(OEIS數列) 由於无平方因子数的所有質因數指數均為一次方,故除1以外,有關數的正因數數目必定是2的非負整數次方。 將无平方因子数分解為兩數之積,這兩數一定互質。 依定義,顯然所有的質數、楔形数、質數階乘與有4個正因數的半質數都是无平方因子数。
xsd:nonNegativeInteger 22006

data from the linked data cloud