Spin structure
http://dbpedia.org/resource/Spin_structure an entity of type: WikicatStructuresOnManifolds
In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry.
rdf:langString
미분위상수학에서 스핀 다양체(spin多樣體, 영어: spin manifold)는 스피너장을 정의할 수 있는 다양체다. 즉, 직교 틀다발 을 이중 피복 공간 에 대하여 적절히 주다발 으로 확장할 수 있는 가향 (준) 리만 다양체다.
rdf:langString
微分幾何学において、向き付け可能リーマン多様体 (M, g) 上のスピン構造(スピンこうぞう、英: spin structure)は、付随するの定義を可能にし、微分幾何学におけるスピノルの概念を生じる。 数理物理学、特に場の量子論へ広く応用され、電荷を持たないフェルミオンに関する任意の理論の定義にスピン構造は必須である。純粋数学的にも、微分幾何学や代数的位相幾何学、K-理論などに於いてスピン構造は興味の対象である。スピン構造はに対する基礎付けを成す。
rdf:langString
En géométrie différentielle, il est possible de définir sur certaines variétés riemanniennes la notion de structure spinorielle (qui se décline en structures Spin ou Spinc), étendant ainsi les considérations algébriques sur le groupe spinoriel et les spineurs. En termes imagés, il s'agit de trouver, dans le cadre des « espaces courbes », une géométrie « cachée » à l’œuvre derrière les concepts géométriques ordinaires. On peut aussi y voir une généralisation de la notion d'orientabilité et de changement d'orientation à une forme d'« orientabilité d'ordre supérieur ». Comme l'orientabilité, la présence de structures spinorielles n'est pas universelle mais se heurte à des obstructions qui peuvent être formulées en termes de classes caractéristiques.
rdf:langString
In matematica, e in particolare in geometria differenziale, una struttura di spin definita su una varietà riemanniana orientabile (M, g) consente di definire i fibrati spinoriali associati, dando origine alla nozione di campo spinoriale.
rdf:langString
rdf:langString
Structure spinorielle
rdf:langString
Struttura di spin
rdf:langString
스핀 다양체
rdf:langString
スピン構造
rdf:langString
Spin structure
xsd:integer
2844303
xsd:integer
1113944806
rdf:langString
En géométrie différentielle, il est possible de définir sur certaines variétés riemanniennes la notion de structure spinorielle (qui se décline en structures Spin ou Spinc), étendant ainsi les considérations algébriques sur le groupe spinoriel et les spineurs. En termes imagés, il s'agit de trouver, dans le cadre des « espaces courbes », une géométrie « cachée » à l’œuvre derrière les concepts géométriques ordinaires. On peut aussi y voir une généralisation de la notion d'orientabilité et de changement d'orientation à une forme d'« orientabilité d'ordre supérieur ». Comme l'orientabilité, la présence de structures spinorielles n'est pas universelle mais se heurte à des obstructions qui peuvent être formulées en termes de classes caractéristiques. Quand elles existent, ces structures jouent un rôle important en géométrie différentielle et en physique théorique. Elles permettent notamment d'introduire l' (en), sorte de racine carrée du laplacien, ou les invariants de Seiberg-Witten pour les variétés orientées de dimension 4.
rdf:langString
In differential geometry, a spin structure on an orientable Riemannian manifold (M, g) allows one to define associated spinor bundles, giving rise to the notion of a spinor in differential geometry. Spin structures have wide applications to mathematical physics, in particular to quantum field theory where they are an essential ingredient in the definition of any theory with uncharged fermions. They are also of purely mathematical interest in differential geometry, algebraic topology, and K theory. They form the foundation for spin geometry.
rdf:langString
미분위상수학에서 스핀 다양체(spin多樣體, 영어: spin manifold)는 스피너장을 정의할 수 있는 다양체다. 즉, 직교 틀다발 을 이중 피복 공간 에 대하여 적절히 주다발 으로 확장할 수 있는 가향 (준) 리만 다양체다.
rdf:langString
In matematica, e in particolare in geometria differenziale, una struttura di spin definita su una varietà riemanniana orientabile (M, g) consente di definire i fibrati spinoriali associati, dando origine alla nozione di campo spinoriale. Le strutture di spin hanno ampie applicazioni in fisica matematica, in particolare nella teoria quantistica dei campi in cui sono un ingrediente essenziale nella definizione di qualsiasi teoria con fermioni privi di carica. Sono anche di interesse puramente matematico in geometria differenziale, topologia algebrica e . Costituiscono le basi per la geometria di spin.
rdf:langString
微分幾何学において、向き付け可能リーマン多様体 (M, g) 上のスピン構造(スピンこうぞう、英: spin structure)は、付随するの定義を可能にし、微分幾何学におけるスピノルの概念を生じる。 数理物理学、特に場の量子論へ広く応用され、電荷を持たないフェルミオンに関する任意の理論の定義にスピン構造は必須である。純粋数学的にも、微分幾何学や代数的位相幾何学、K-理論などに於いてスピン構造は興味の対象である。スピン構造はに対する基礎付けを成す。
xsd:nonNegativeInteger
29807