Spectral geometry
http://dbpedia.org/resource/Spectral_geometry
La géométrie spectrale est une branche des mathématiques issue d'un croisement entre la géométrie différentielle des variétés riemanniennes et de la théorie spectrale de l'opérateur de Laplace-Beltrami. En géométrie riemannienne, l'opérateur de Laplace-Beltrami est la généralisation du laplacien de l'espace euclidien usuel : son spectre est un invariant géométrique majeur. L'étude de cet opérateur et plus particulièrement de son spectre utilise la théorie spectrale, l'analyse harmonique ainsi que la géométrie différentielle. Cette théorie trouve des applications par exemple en physique théorique, notamment pour l'étude de la limite semi-classique en mécanique quantique, ainsi qu'en chaos quantique.
rdf:langString
Geometri spektral adalah sebuah bidang dalam matematika yang menyoroti hubungan antara struktur geometrik manifold dan dari terdefinisi secara kanonikal. Kasus pada sebuah manifold Riemannian telah dipelajari paling intensif, meskipun lainnya juga dieksaminasi. Bidang tersebut menyoroti dirinya sendiri dengan dua jenis pertanyaan: masalah langsung dan masalah inverse.
rdf:langString
スペクトル幾何学(スペクトルきかがく、英語: Spectral geometry)は、多様体の幾何学的構造と正準に(英: canonically)定義された微分作用素との間の関係に関する、数学の一分野である。閉じたリーマン多様体における(英語: Laplace-Beltrami operator)の場合は最も集中的に研究されてきた、しかしながら、その他の(英語: Laplace operators in differential geometry)も試みられてきた。その分野自体は二つの問題と関わる:直接問題ならびに逆問題である。
rdf:langString
Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry have also been examined. The field concerns itself with two kinds of questions: direct problems and inverse problems.
rdf:langString
rdf:langString
Geometri spektral
rdf:langString
Géométrie spectrale
rdf:langString
スペクトル幾何学
rdf:langString
Spectral geometry
xsd:integer
20635289
xsd:integer
987119519
rdf:langString
La géométrie spectrale est une branche des mathématiques issue d'un croisement entre la géométrie différentielle des variétés riemanniennes et de la théorie spectrale de l'opérateur de Laplace-Beltrami. En géométrie riemannienne, l'opérateur de Laplace-Beltrami est la généralisation du laplacien de l'espace euclidien usuel : son spectre est un invariant géométrique majeur. L'étude de cet opérateur et plus particulièrement de son spectre utilise la théorie spectrale, l'analyse harmonique ainsi que la géométrie différentielle. Cette théorie trouve des applications par exemple en physique théorique, notamment pour l'étude de la limite semi-classique en mécanique quantique, ainsi qu'en chaos quantique.
rdf:langString
Geometri spektral adalah sebuah bidang dalam matematika yang menyoroti hubungan antara struktur geometrik manifold dan dari terdefinisi secara kanonikal. Kasus pada sebuah manifold Riemannian telah dipelajari paling intensif, meskipun lainnya juga dieksaminasi. Bidang tersebut menyoroti dirinya sendiri dengan dua jenis pertanyaan: masalah langsung dan masalah inverse.
rdf:langString
Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry have also been examined. The field concerns itself with two kinds of questions: direct problems and inverse problems. Inverse problems seek to identify features of the geometry from information about the eigenvalues of the Laplacian. One of the earliest results of this kind was due to Hermann Weyl who used David Hilbert's theory of integral equation in 1911 to show that the volume of a bounded domain in Euclidean space can be determined from the asymptotic behavior of the eigenvalues for the Dirichlet boundary value problem of the Laplace operator. This question is usually expressed as "Can one hear the shape of a drum?", the popular phrase due to Mark Kac. A refinement of Weyl's asymptotic formula obtained by Pleijel and Minakshisundaram produces a series of local spectral invariants involving covariant differentiations of the curvature tensor, which can be used to establish spectral rigidity for a special class of manifolds. However as the example given by John Milnor tells us, the information of eigenvalues is not enough to determine the isometry class of a manifold (see isospectral). A general and systematic method due to Toshikazu Sunada gave rise to a veritable cottage industry of such examples which clarifies the phenomenon of isospectral manifolds. Direct problems attempt to infer the behavior of the eigenvalues of a Riemannian manifold from knowledge of the geometry. The solutions to direct problems are typified by the Cheeger inequality which gives a relation between the first positive eigenvalue and an isoperimetric constant (the Cheeger constant). Many versions of the inequality have been established since Cheeger's work (by R. Brooks and P. Buser for instance).
rdf:langString
スペクトル幾何学(スペクトルきかがく、英語: Spectral geometry)は、多様体の幾何学的構造と正準に(英: canonically)定義された微分作用素との間の関係に関する、数学の一分野である。閉じたリーマン多様体における(英語: Laplace-Beltrami operator)の場合は最も集中的に研究されてきた、しかしながら、その他の(英語: Laplace operators in differential geometry)も試みられてきた。その分野自体は二つの問題と関わる:直接問題ならびに逆問題である。
xsd:nonNegativeInteger
3139