Spectral clustering
http://dbpedia.org/resource/Spectral_clustering an entity of type: Abstraction100002137
Das spektrale Clustering ist ein Verfahren der Clusteranalyse. Die zu clusternden Objekte werden als Knoten eines Graphen betrachtet. Die Distanzen oder Unähnlichkeiten zwischen den Objekten werden durch die gewichteten Kanten zwischen den Knoten des Graphen repräsentiert. Graphentheoretische Resultate über Laplace-Matrizen von Graphen mit Zusammenhangskomponenten sind die Grundlage des spektralen Clusterings. Die Eigenwerte einer Matrix werden auch Spektrum genannt, daher stammt der Name des Verfahrens. Die graphentheoretischen Grundlagen wurden von Donath & Hoffman (1973) sowie Fiedler (1973) gelegt.
rdf:langString
En estadísticas multivariantes y agrupamiento de los datos, las técnicas agrupamiento espectral hacen uso del (valores propios) de la de los datos para realizar reducción de dimensionalidad antes de la agrupación en un menor número de dimensiones. La matriz de similitud se proporciona como una entrada y consta de una evaluación cuantitativa de la similitud relativa de cada par de puntos en el conjunto de datos. En aplicación a la segmentación de la imagen, la agrupación espectral se conoce como .
rdf:langString
In multivariate statistics, spectral clustering techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The similarity matrix is provided as an input and consists of a quantitative assessment of the relative similarity of each pair of points in the dataset. In application to image segmentation, spectral clustering is known as segmentation-based object categorization.
rdf:langString
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления снижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных. В приложении к сегментации изображений спектральная кластеризация известна как .
rdf:langString
在多元变量统计中,谱聚类(英語:spectral clustering)技术利用数据相似矩阵的谱(特征值),在对数据进行降维后,以较少的维度进行聚类。相似矩阵作为输入,提供了对数据集中每一对点相对相似性的定量评估。 在图像分割中,谱聚类被称为基于分割的物体分类。
rdf:langString
En informatique théorique, le partitionnement spectral ou spectral clustering en anglais, est un type de partitionnement de données prenant en compte les propriétés spectrales de l'entrée. Le partitionnement spectral utilise le plus souvent les vecteurs propres d'une matrice de similarités. Par rapport à des algorithmes classiques comme celui des k-moyennes, cette technique offre l'avantage de classer des ensembles de données de structure « non-globulaire », dans un espace de représentation adéquat.
rdf:langString
rdf:langString
Spektrales Clustering
rdf:langString
Agrupamiento espectral
rdf:langString
Partitionnement spectral
rdf:langString
Spectral clustering
rdf:langString
Спектральная кластеризация
rdf:langString
谱聚类
xsd:integer
13651683
xsd:integer
1124061733
rdf:langString
Das spektrale Clustering ist ein Verfahren der Clusteranalyse. Die zu clusternden Objekte werden als Knoten eines Graphen betrachtet. Die Distanzen oder Unähnlichkeiten zwischen den Objekten werden durch die gewichteten Kanten zwischen den Knoten des Graphen repräsentiert. Graphentheoretische Resultate über Laplace-Matrizen von Graphen mit Zusammenhangskomponenten sind die Grundlage des spektralen Clusterings. Die Eigenwerte einer Matrix werden auch Spektrum genannt, daher stammt der Name des Verfahrens. Die graphentheoretischen Grundlagen wurden von Donath & Hoffman (1973) sowie Fiedler (1973) gelegt.
rdf:langString
En estadísticas multivariantes y agrupamiento de los datos, las técnicas agrupamiento espectral hacen uso del (valores propios) de la de los datos para realizar reducción de dimensionalidad antes de la agrupación en un menor número de dimensiones. La matriz de similitud se proporciona como una entrada y consta de una evaluación cuantitativa de la similitud relativa de cada par de puntos en el conjunto de datos. En aplicación a la segmentación de la imagen, la agrupación espectral se conoce como .
rdf:langString
En informatique théorique, le partitionnement spectral ou spectral clustering en anglais, est un type de partitionnement de données prenant en compte les propriétés spectrales de l'entrée. Le partitionnement spectral utilise le plus souvent les vecteurs propres d'une matrice de similarités. Par rapport à des algorithmes classiques comme celui des k-moyennes, cette technique offre l'avantage de classer des ensembles de données de structure « non-globulaire », dans un espace de représentation adéquat. Ce partitionnement est notamment utilisé en intelligence artificielle, où le terme classification spectrale renvoie au fait de faire de la classification non-supervisée en utilisant ce type de partitionnement.
rdf:langString
In multivariate statistics, spectral clustering techniques make use of the spectrum (eigenvalues) of the similarity matrix of the data to perform dimensionality reduction before clustering in fewer dimensions. The similarity matrix is provided as an input and consists of a quantitative assessment of the relative similarity of each pair of points in the dataset. In application to image segmentation, spectral clustering is known as segmentation-based object categorization.
rdf:langString
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления снижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных. В приложении к сегментации изображений спектральная кластеризация известна как .
rdf:langString
在多元变量统计中,谱聚类(英語:spectral clustering)技术利用数据相似矩阵的谱(特征值),在对数据进行降维后,以较少的维度进行聚类。相似矩阵作为输入,提供了对数据集中每一对点相对相似性的定量评估。 在图像分割中,谱聚类被称为基于分割的物体分类。
xsd:nonNegativeInteger
22928