Small control property
http://dbpedia.org/resource/Small_control_property
For applied mathematics, in nonlinear control theory, a non-linear system of the form is said to satisfy the small control property if for every there exists a so that for all there exists a so that the time derivative of the system's Lyapunov function is negative definite at that point. In other words, even if the control input is arbitrarily small, a starting configuration close enough to the origin of the system can be found that is asymptotically stabilizable by such an input.
rdf:langString
小控制信號特性(small control property)簡稱SCP,是非線性控制理論中的詞語。在型式的非線性系統,若針對每一個,都存在,讓所有滿足的狀態,都有可以讓系統在該狀態下的李亞普諾夫函數對時間的微分為負定。 簡單來說,小控制信號特性是指考慮任意小的控制信號,只要起始狀態和系統原點的距離夠近,該控制信號都可以讓系統漸近穩定。
rdf:langString
rdf:langString
Small control property
rdf:langString
小控制信號特性
xsd:integer
23537962
xsd:integer
1072087116
rdf:langString
For applied mathematics, in nonlinear control theory, a non-linear system of the form is said to satisfy the small control property if for every there exists a so that for all there exists a so that the time derivative of the system's Lyapunov function is negative definite at that point. In other words, even if the control input is arbitrarily small, a starting configuration close enough to the origin of the system can be found that is asymptotically stabilizable by such an input.
rdf:langString
小控制信號特性(small control property)簡稱SCP,是非線性控制理論中的詞語。在型式的非線性系統,若針對每一個,都存在,讓所有滿足的狀態,都有可以讓系統在該狀態下的李亞普諾夫函數對時間的微分為負定。 簡單來說,小控制信號特性是指考慮任意小的控制信號,只要起始狀態和系統原點的距離夠近,該控制信號都可以讓系統漸近穩定。
xsd:nonNegativeInteger
817