Singular submodule
http://dbpedia.org/resource/Singular_submodule
環論および加群論という抽象代数学の分野において、各右(resp. 左)R 加群 M は零化イデアルが R の本質右(resp. 左)イデアルであるような元からなる特異部分加群 (singular submodule) をもつ。集合の表記ではそれは通常 と表記される。一般の環に対して、 は域に対して最もしばしば定義される捩れ部分加群 t(M) の良い一般化である。R が可換域の場合には、 である。 R が任意の環であれば、 は R を右加群と考えて定義され、この場合 は R の右特異イデアル (right singular ideal) と呼ばれる R の両側イデアルである。同様に左側の類似物 が定義される。 であることがある。 この記事は特異部分加群と特異イデアルの点から、特異加群 (singular module)、非特異加群 (nonsingular module)、そして右と左非特異環 (nonsingular ring) の定義を含むいくつかの概念を展開する。
rdf:langString
In the branches of abstract algebra known as ring theory and module theory, each right (resp. left) R-module M has a singular submodule consisting of elements whose annihilators are essential right (resp. left) ideals in R. In set notation it is usually denoted as . For general rings, is a good generalization of the torsion submodule tors(M) which is most often defined for domains. In the case that R is a commutative domain, .
rdf:langString
rdf:langString
特異部分加群
rdf:langString
Singular submodule
xsd:integer
32191263
xsd:integer
1065842537
rdf:langString
In the branches of abstract algebra known as ring theory and module theory, each right (resp. left) R-module M has a singular submodule consisting of elements whose annihilators are essential right (resp. left) ideals in R. In set notation it is usually denoted as . For general rings, is a good generalization of the torsion submodule tors(M) which is most often defined for domains. In the case that R is a commutative domain, . If R is any ring, is defined considering R as a right module, and in this case is a two-sided ideal of R called the right singular ideal of R. The left handed analogue is defined similarly. It is possible for .
rdf:langString
環論および加群論という抽象代数学の分野において、各右(resp. 左)R 加群 M は零化イデアルが R の本質右(resp. 左)イデアルであるような元からなる特異部分加群 (singular submodule) をもつ。集合の表記ではそれは通常 と表記される。一般の環に対して、 は域に対して最もしばしば定義される捩れ部分加群 t(M) の良い一般化である。R が可換域の場合には、 である。 R が任意の環であれば、 は R を右加群と考えて定義され、この場合 は R の右特異イデアル (right singular ideal) と呼ばれる R の両側イデアルである。同様に左側の類似物 が定義される。 であることがある。 この記事は特異部分加群と特異イデアルの点から、特異加群 (singular module)、非特異加群 (nonsingular module)、そして右と左非特異環 (nonsingular ring) の定義を含むいくつかの概念を展開する。
xsd:nonNegativeInteger
6215