Semi-Thue system

http://dbpedia.org/resource/Semi-Thue_system an entity of type: Artifact100021939

System półthueowski to zbliżony do gramatyk typu 0. Jedyna różnica polega na tym, że w systemach półthueowskich nie ma podziału na symbole terminalne i nieterminalne ani wyróżnionego symbolu początkowego. Formalnie, system półthueowski S nad alfabetem A jest relacją gdzie oznacza zbiór wszystkich słów nad alfabetem A (domknięcie Kleenego). System półthueowski, w którym wszystkie reguły są odwracalne (tj. jeśli jest regułą, to też), nazywany jest systemem Thuego. rdf:langString
Na ciência da computação e na matemática, um sistema de Thue-Semi é um sistema de cadeia reescrito. Recebeu o nome devido aos trabalhos do matemático norueguês Axel Thue, que iniciou tratamentos sistemáticos à sistemas de cadeia reescritos nos princípios do século XX. rdf:langString
Semi-Thue-System (oder auch Umformungssystem, Wortersetzungssystem oder Stringersetzungssystem) ist in der Theoretischen Informatik ein Regelsystem zur Transformation von Wörtern. Anders als bei formalen Grammatiken liegt aber nur ein Alphabet mit Ersetzungsregeln vor, es wird nicht zwischen Terminalsymbolen und Nichtterminalsymbolen unterschieden und es gibt kein Startsymbol. rdf:langString
En informatique théorique et en logique mathématique, un système de semi-Thue ou sa version symétrique, un système de Thue, est un système de réécriture de chaînes de caractères ou mots, appelé ainsi d'après son inventeur, le mathématicien norvégien Axel Thue. Contrairement aux grammaires formelles, un tel système ne distingue pas entre symboles terminaux et non terminaux, et ne possède pas d'axiome. Le problème de décider de l'existence d'une relation entre deux mots est indécidable. rdf:langString
In theoretical computer science and mathematical logic a string rewriting system (SRS), historically called a semi-Thue system, is a rewriting system over strings from a (usually finite) alphabet. Given a binary relation between fixed strings over the alphabet, called rewrite rules, denoted by , an SRS extends the rewriting relation to all strings in which the left- and right-hand side of the rules appear as substrings, that is , where , , , and are strings. rdf:langString
rdf:langString Semi-Thue-System
rdf:langString Système de Thue
rdf:langString System półthueowski
rdf:langString Semi-Thue system
rdf:langString Sistemas de Thue-Semi
xsd:integer 2452154
xsd:integer 1109402028
rdf:langString Semi-Thue-System (oder auch Umformungssystem, Wortersetzungssystem oder Stringersetzungssystem) ist in der Theoretischen Informatik ein Regelsystem zur Transformation von Wörtern. Anders als bei formalen Grammatiken liegt aber nur ein Alphabet mit Ersetzungsregeln vor, es wird nicht zwischen Terminalsymbolen und Nichtterminalsymbolen unterschieden und es gibt kein Startsymbol. Motiviert durch David Hilberts Vortrag im Jahre 1900 und die Ausführungen über eine logische Fundamentierung der Mathematik untersuchte der norwegische Mathematiker Axel Thue die Möglichkeiten, die reine Ableitungskalküle eröffnen, zunächst ganz grundlegend. Aus diesen Untersuchungen hat sich der heutige Begriff des Thue-Systems und des Semi-Thue-Systems herausgebildet. Die auch in der Logik häufig verwendeten Ableitungs-Kalküle stammen von Emil Leon Post (1936) und als Ersetzungssysteme für Zeichenketten schließlich schon 1914 von Axel Thue. Die Thue-Systeme bilden den Ausgangspunkt zur Definition von Chomsky-Grammatiken; sie verallgemeinern das Prinzip der Ersetzung von Einzelsymbolen in Zeichenketten auf die Ersetzung ganzer Teilzeichenketten. Eine zulässige Ersetzung nach einem bestimmten Semi-Thue-System besteht darin, in einer vorliegenden Zeichenkette eine bestimmte Teilzeichenkette vorzufinden und diese durch eine bestimmte andere zu substituieren. Das Paar aus ersetzender und ersetzter Teilzeichenkette nennt man Substitution, die Menge aller Substitutionen, die man zulässt, bestimmt zusammen mit dem Zeichenalphabet das spezifische Semi-Thue-System.
rdf:langString In theoretical computer science and mathematical logic a string rewriting system (SRS), historically called a semi-Thue system, is a rewriting system over strings from a (usually finite) alphabet. Given a binary relation between fixed strings over the alphabet, called rewrite rules, denoted by , an SRS extends the rewriting relation to all strings in which the left- and right-hand side of the rules appear as substrings, that is , where , , , and are strings. The notion of a semi-Thue system essentially coincides with the presentation of a monoid. Thus they constitute a natural framework for solving the word problem for monoids and groups. An SRS can be defined directly as an abstract rewriting system. It can also be seen as a restricted kind of a term rewriting system. As a formalism, string rewriting systems are Turing complete. The semi-Thue name comes from the Norwegian mathematician Axel Thue, who introduced systematic treatment of string rewriting systems in a 1914 paper. Thue introduced this notion hoping to solve the word problem for finitely presented semigroups. Only in 1947 was the problem shown to be undecidable— this result was obtained independently by Emil Post and A. A. Markov Jr.
rdf:langString En informatique théorique et en logique mathématique, un système de semi-Thue ou sa version symétrique, un système de Thue, est un système de réécriture de chaînes de caractères ou mots, appelé ainsi d'après son inventeur, le mathématicien norvégien Axel Thue. Contrairement aux grammaires formelles, un tel système ne distingue pas entre symboles terminaux et non terminaux, et ne possède pas d'axiome. Un système de semi-Thue est donné par une relation binaire finie fixe entre mots sur un alphabet donné, dont les éléments sont appelés les règles de réécriture, et notées . La relation est étendue en une relation de réécriture entre tous les mots dans lesquels les parties gauche et droite d'une règle apparaissent en facteur, en d'autres termes on a la relation , pour une règle de et des mots , et quelconques. Les systèmes de semi-Thue sont Turing-complets. Ils sont voisins des systèmes de Post. Axel Thue a étudié les systèmes de réécriture dans deux articles, l'un sur la réécriture de termes, l'autre sur la réécriture des mots ; c'est du deuxième que dérivent les systèmes de semi-Thue. Le problème de décider de l'existence d'une relation entre deux mots est indécidable.
rdf:langString System półthueowski to zbliżony do gramatyk typu 0. Jedyna różnica polega na tym, że w systemach półthueowskich nie ma podziału na symbole terminalne i nieterminalne ani wyróżnionego symbolu początkowego. Formalnie, system półthueowski S nad alfabetem A jest relacją gdzie oznacza zbiór wszystkich słów nad alfabetem A (domknięcie Kleenego). System półthueowski, w którym wszystkie reguły są odwracalne (tj. jeśli jest regułą, to też), nazywany jest systemem Thuego.
rdf:langString Na ciência da computação e na matemática, um sistema de Thue-Semi é um sistema de cadeia reescrito. Recebeu o nome devido aos trabalhos do matemático norueguês Axel Thue, que iniciou tratamentos sistemáticos à sistemas de cadeia reescritos nos princípios do século XX.
xsd:nonNegativeInteger 21121

data from the linked data cloud