Sedrakyan's inequality
http://dbpedia.org/resource/Sedrakyan's_inequality
Lema Titu (ditemukan oleh , atau dikenal juga lema T2, bentuk Engel, atau pertidaksamaan Sedrakyan) menyatakan untuk real positif, kita harus mencari Konsekuensi dari Pertidaksamaan Cauchy-Schwarz adalah perolehan setelah menggunakan dan Bentuk ini membantu kita saat pertidaksamaan melibatkan pecahan di mana bilangannya adalah kuadrat sempurna. Maka
rdf:langString
The following inequality is known as Sedrakyan's inequality, Bergström's inequality, Engel's form or Titu's lemma, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu Andreescu published in 2003.It is a direct consequence of Cauchy–Bunyakovsky–Schwarz inequality. Nevertheless, in his article (1997) Sedrakyan has noticed that written in this form this inequality can be used as a mathematical proof technique and it has very useful new applications. In the book Algebraic Inequalities (Sedrakyan) are provided several generalizations of this inequality.
rdf:langString
权方和不等式是一种分式不等式。 取等条件:
rdf:langString
rdf:langString
Lema Titu
rdf:langString
Sedrakyan's inequality
rdf:langString
权方和不等式
xsd:integer
58325116
xsd:integer
1115469645
rdf:langString
Lema Titu (ditemukan oleh , atau dikenal juga lema T2, bentuk Engel, atau pertidaksamaan Sedrakyan) menyatakan untuk real positif, kita harus mencari Konsekuensi dari Pertidaksamaan Cauchy-Schwarz adalah perolehan setelah menggunakan dan Bentuk ini membantu kita saat pertidaksamaan melibatkan pecahan di mana bilangannya adalah kuadrat sempurna. Maka
rdf:langString
The following inequality is known as Sedrakyan's inequality, Bergström's inequality, Engel's form or Titu's lemma, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu Andreescu published in 2003.It is a direct consequence of Cauchy–Bunyakovsky–Schwarz inequality. Nevertheless, in his article (1997) Sedrakyan has noticed that written in this form this inequality can be used as a mathematical proof technique and it has very useful new applications. In the book Algebraic Inequalities (Sedrakyan) are provided several generalizations of this inequality.
rdf:langString
权方和不等式是一种分式不等式。 取等条件:
xsd:nonNegativeInteger
5324