Ricci calculus
http://dbpedia.org/resource/Ricci_calculus an entity of type: Thing
في الرياضيات، يشكل حساب ريتشي قواعد تدوين الفهرس والتلاعب في مجالات الموتر والموتر. وهو أيضًا الاسم الحديث لما كان يُطلق عليه حساب التفاضل والتكامل المطلق (أساس حساب الموتر)، الذي طوره غريغوريو ريتشي في 1887-1896، وتم تعميمه لاحقًا في ورقة مكتوبة مع تلميذه توليو ليفي تشيفيتا في 1900. طور جان أرنولدوس شوتن الرموز الحديثة والشكلية لهذا الإطار الرياضي، وقدم مساهمات في النظرية، خلال تطبيقاته للنسبية العامة والهندسة التفاضلية في أوائل القرن العشرين.
rdf:langString
Em matemática, o cálculo de Ricci constitui as regras da notação de índice e manipulação de tensores e campos tensoriais. Também é o nome moderno para o que costumava ser chamado de cálculo diferencial absoluto (a base do cálculo tensorial), desenvolvido por Gregorio Ricci-Curbastro em 1887-1896, e posteriormente popularizado em um artigo escrito com seu pupilo Tullio Levi-Civita em 1900. Jan Arnoldus Schouten desenvolveu a notação moderna e o formalismo para esta estrutura matemática, e fez contribuições com a teoria, durante suas aplicações à relatividade geral e geometria diferencial no início do século XX.
rdf:langString
In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century.
rdf:langString
rdf:langString
حساب ريتشي
rdf:langString
Ricci calculus
rdf:langString
Cálculo de Ricci
xsd:integer
35456546
xsd:integer
1124931328
rdf:langString
في الرياضيات، يشكل حساب ريتشي قواعد تدوين الفهرس والتلاعب في مجالات الموتر والموتر. وهو أيضًا الاسم الحديث لما كان يُطلق عليه حساب التفاضل والتكامل المطلق (أساس حساب الموتر)، الذي طوره غريغوريو ريتشي في 1887-1896، وتم تعميمه لاحقًا في ورقة مكتوبة مع تلميذه توليو ليفي تشيفيتا في 1900. طور جان أرنولدوس شوتن الرموز الحديثة والشكلية لهذا الإطار الرياضي، وقدم مساهمات في النظرية، خلال تطبيقاته للنسبية العامة والهندسة التفاضلية في أوائل القرن العشرين.
rdf:langString
In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century. A component of a tensor is a real number that is used as a coefficient of a basis element for the tensor space. The tensor is the sum of its components multiplied by their corresponding basis elements. Tensors and tensor fields can be expressed in terms of their components, and operations on tensors and tensor fields can be expressed in terms of operations on their components. The description of tensor fields and operations on them in terms of their components is the focus of the Ricci calculus. This notation allows an efficient expression of such tensor fields and operations. While much of the notation may be applied with any tensors, operations relating to a differential structure are only applicable to tensor fields. Where needed, the notation extends to components of non-tensors, particularly multidimensional arrays. A tensor may be expressed as a linear sum of the tensor product of vector and covector basis elements. The resulting tensor components are labelled by indices of the basis. Each index has one possible value per dimension of the underlying vector space. The number of indices equals the degree (or order) of the tensor. For compactness and convenience, the Ricci calculus incorporates Einstein notation, which implies summation over indices repeated within a term and universal quantification over free indices. Expressions in the notation of the Ricci calculus may generally be interpreted as a set of simultaneous equations relating the components as functions over a manifold, usually more specifically as functions of the coordinates on the manifold. This allows intuitive manipulation of expressions with familiarity of only a limited set of rules.
rdf:langString
Em matemática, o cálculo de Ricci constitui as regras da notação de índice e manipulação de tensores e campos tensoriais. Também é o nome moderno para o que costumava ser chamado de cálculo diferencial absoluto (a base do cálculo tensorial), desenvolvido por Gregorio Ricci-Curbastro em 1887-1896, e posteriormente popularizado em um artigo escrito com seu pupilo Tullio Levi-Civita em 1900. Jan Arnoldus Schouten desenvolveu a notação moderna e o formalismo para esta estrutura matemática, e fez contribuições com a teoria, durante suas aplicações à relatividade geral e geometria diferencial no início do século XX.
xsd:nonNegativeInteger
43217